精英家教網 > 高中數學 > 題目詳情

已知函數上是單調遞減函數,
方程無實根,若“”為真,“”為假,求的取值范圍。

解析試題分析:由“”為真,“”為假可知p,q一真一假,分別討論p真q假,p假q真兩種情況下對應的不等式.P由導函數求單調區間,q為一元二次方程無實根.
試題解析:
解:p:
因為函數y在上是單調遞減函數,所以上恒成立。  2分
故:,所以  4分
q:方程無實根,故
所以:  6分
因為“p或q”為真,”p且q“為假,所以:p,q一真一假。
(1)當p真q假時,  8分
(2)當p假q真時,  10分
綜上:m的取值范圍是:。  12分
考點:利用導數求單調性,一元二次方程的根的判斷,邏輯聯結詞.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

一個如圖所示的不規則形鐵片,其缺口邊界是口寬4分米,深2分米(頂點至兩端點所在直線的距離)的拋物線形的一部分,現要將其缺口邊界裁剪為等腰梯形.
(1)若保持其缺口寬度不變,求裁剪后梯形缺口面積的最小值;
(2)若保持其缺口深度不變,求裁剪后梯形缺口面積的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知,
(1)設,求函數的圖像在處的切線方程;
(2)求證:對任意的恒成立;
(3)若,且,求證:

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數時都取得極值
(1)求的值與函數的單調區間
(2)若對,不等式恒成立,求的取值范圍 

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數,其中b≠0.
(1)當b>時,判斷函數在定義域上的單調性:
(2)求函數的極值點.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,,其中.
(1)若是函數的極值點,求實數的值;
(2)若對任意的(為自然對數的底數)都有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)對于函數中的任意實數x,在上總存在實數,使得成立,求實數的取值范圍
(2)設函數,當在區間內變化時,
(1)求函數的取值范圍;
(2)若函數有零點,求實數m的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

定義在實數集上的函數.
⑴求函數的圖象在處的切線方程;
⑵若對任意的恒成立,求實數m的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知
(1)當時,求的極值;
(2)當時,討論的單調性;
(3)若對任意的,恒有成立,求實數的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视