【題目】一個大型噴水池的中央有一個強力噴水柱,為了測量噴水柱噴出的水柱的高度,某人在噴水柱正西方向的點A測得水柱頂端的仰角為45°,沿點A向北偏東30°前進100 m到達點B,在B點測得水柱頂端的仰角為30°,則水柱的高度是( )
A. 50 mB. 100 m
C. 120 mD. 150 m
【答案】A
【解析】
如圖所示,設水柱CD的高度為h.在Rt△ACD中,由∠DAC=45°,可得AC=h.由∠BAE=30°,可得∠CAB=60°.在Rt△BCD中,∠CBD=30°,可得BC=.在△ABC中,由余弦定理可得:BC2=AC2+AB2﹣2ACABcos60°.代入即可得出.
如圖所示,
設水柱CD的高度為h.
在Rt△ACD中,∵∠DAC=45°,∴AC=h.
∵∠BAE=30°,∴∠CAB=60°.
又∵B,A,C在同一水平面上,∴△BCD是以C為直角頂點的直角三角形,
在Rt△BCD中,∠CBD=30°,∴BC=.
在△ABC中,由余弦定理可得:BC2=AC2+AB2﹣2ACABcos60°.
∴()2=h2+1002﹣
,
化為h2+50h﹣5000=0,解得h=50.
故選:A.
科目:高中數學 來源: 題型:
【題目】從某校高中男生中隨機選取100名學生,將他們的體重(單位: )數據繪制成頻率分布直方圖,如圖所示.
(1)估計該校的100名同學的平均體重(同一組數據以該組區間的中點值作代表);
(2)若要從體重在,
內的兩組男生中,用分層抽樣的方法選取5人,再從這5人中隨機抽取3人,記體重在
內的人數為
,求其分布列和數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司要了解某商品的年廣告費(單位:萬元)對年銷售額
(單位:萬元)的影響,對近4年的年廣告費
和年銷售額
數據作了初步調研,得到下面的表格:
年廣告費 | 2 | 3 | 4 | 5 |
年銷售額 | 26 | 39 | 49 | 54 |
用廣告費作解釋變量,年銷售額作預報變量,且適宜作為年銷售額
關于年廣告費
的回歸方程類型.
(1)根據表中數據,建立關于
的回歸方程.
(2)已知商品的年利潤與
,
的關系式為
,根據(1)中的結果,估計年廣告費
為何值時(小數點后保留兩位),年利潤的預報值最大?
(對于數據,其回歸方程
的斜率和截距的最小二乘估計分別為
,
).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為推導球的體積公式,劉徽制造了一個牟合方蓋(在一個正方體內作兩個互相垂直的內切圓柱,這兩個圓柱的公共部分叫做牟合方蓋),但沒有得到牟合方蓋的體積.200年后,祖暅給出牟合方蓋的體積計算方法,其核心過程被后人稱為祖暅原理:緣冪勢既同,則積不容異.意思是,夾在兩個平行平面間的兩個幾何體被平行于這兩個平行平面的任意平面所截,如果截面的面積總相等,那么這兩個幾何體的體積也相等.現在截取牟合方蓋的八分之一,它的外切正方體的棱長為1,如圖所示,根據以上信息,則該牟合方蓋的體積為( )
A. B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知拋物線,點
.
(1)求拋物線的頂點坐標;
(2)若拋物線與
軸的交點為
,連接
,并延長交拋物線
于點
,求證:
;
(3)將拋物線作適當的平移,得拋物線
,若
時,
恒成立,求
得最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直線l、m,平面α、β,下列命題正確的是 ( )
A. l∥β,lαα∥β
B. l∥β,m∥β,lα,mαα∥β
C. l∥m,lα,mβα∥β
D. l∥β,m∥β,lα,mα,l∩m=Mα∥β
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的極坐標方程是
,以極點為原點,極軸為
軸的正半軸建立平面直角坐標系,直線
的參數方程為
(
為參數).
(I)寫出直線的一般方程與曲線
的直角坐標方程,并判斷它們的位置關系;
(II)將曲線向左平移
個單位長度,向上平移
個單位長度,得到曲線
,設曲線
經過伸縮變換
得到曲線
,設曲線
上任一點為
,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】以下給出了4個命題:
(1)兩個長度相等的向量一定相等;
(2)相等的向量起點必相同;
(3)若,且
,則
;
(4)若向量的模小于
的模,則
.
其中正確命題的個數共有( )
A.3 個B.2 個C.1 個D.0個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某電子商務公司隨機抽取1000名網購者進行調查.這1000名購物者2018年網購金額(單位:萬元)均在區間內,樣本分組為:
,
,
,
,
,
,購物金額的頻率分布直方圖如下:
電子商務公司決定給購物者發放優惠券,其金額(單位:元)與購物金額關系如下:
購物金額分組 | ||||
發放金額 | 50 | 100 | 150 | 200 |
(1)求這1000名購物者獲得優惠券金額的平均數;
(2)以這1000名購物者購物金額落在相應區間的頻率作為概率,求一個購物者獲得優惠券金額不少于150元的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com