精英家教網 > 高中數學 > 題目詳情
(本小題滿分12分)
設函數f (x)=,其中a∈R.
(1)若a=1,f (x)的定義域為[0,3],求f (x)的最大值和最小值.
(2)若函數f (x)的定義域為區間(0,+∞),求a的取值范圍使f (x)在定義域內是單調減函數.
(1)f (x)max=,f (x)min=-1;(2)a<-1。

試題分析:f (x)==a-,
設x1,x2∈R,則f (x1)-f (x2)=.        ……2分
(1)當a=1時,設0≤x1<x2≤3,則f (x1)-f (x2)=
又x1-x2<0,x1+1>0,x2+1>0,所以f (x1)-f (x2)<0,
∴f (x1)<f (x2),                                   ……4分
所以f (x)在[0,3]上是增函數,所以f (x)max=f (3)=1-;
f (x)min=f (0)=1-=-1.                        ……7分
(2)設x1>x2>0,則x1-x2>0,x1+1>0,x2+1>0
要f (x)在(0,+∞)上是減函數,只要f (x1)-f (x2)<0
而f (x1)-f (x2)=,所以當a+1<0即a<-1時,有f (x1)-f (x2)<0,所以f (x1)<f (x2),
所以當a<-1時,f (x)在定義域(0,+∞)上是單調減函數.       ……12分
點評:對于形如的函數,我們常采取分離常數法化為的形式。而的圖像可以有反比例函數的圖像經過平移伸縮變換得到。
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:單選題

若函數
A.B.
C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

定義:若函數對于其定義域內的某一數,有,則稱的一個不動點. 已知函數.
(1)當,時,求函數的不動點;
(2)若對任意的實數b,函數恒有兩個不動點,求實數的取值范圍;
(3)在(2)的條件下,若圖象上兩個點A、B的橫坐標是函數的不動點,且線段AB的中點C在函數的圖象上,求實數b的最小值.
(參考公式:若,則線段AB的中點坐標為)

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

若函數是R是的單調遞減函數,則實數的取值范圍是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分16分)設,.
(1)若恒成立,求實數的取值范圍;
(2)若時,恒成立,求實數的取值范圍;
(3)當時,解不等式.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知f(x)=ax2+bx+c的圖象過原點(-1,0),是否存在常數a、b、c,使不等式x≤f(x) ≤對一切實數x均成立?

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(本題滿分12分)已知函數y=的定義域為R,解關于x的不等式

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知P={0,1},Q={-1,0,1},f是從P到Q的映射,則滿足f(0)>f(1)的映射有(   )個
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

函數的圖象關于(    )對稱
A.原點B.x軸C.y軸D.直線

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视