【題目】某城市為了解游客人數的變化規律,提高旅游服務質量,收集并整理了2017年1月至2019年12月期間月接待游客量(單位:萬人)的數據,繪制了下面的折線圖.根據該折線圖,下列結論正確的是( )
A.年接待游客量逐年增加
B.各年的月接待游客量高峰期大致在8月
C.2017年1月至12月月接待游客量的中位數為30
D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩
科目:高中數學 來源: 題型:
【題目】踢毽子是中國民間傳統的運動項目之一,起源于漢朝,至今已有兩千多年的歷史,是一項簡便易行的健身活動.某單位組織踢毽子比賽,把10人平均分成甲、乙兩組,其中甲組每人在1分鐘內踢毽子的數目分別為26,29,32,45,51;乙組每人在1分鐘內踢毽子的數目分別為28,31,38,42,49.從甲、乙兩組中各隨機抽取1人,則這兩人踢毽子的數目之和為奇數的概率是( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知鮮切花的質量等級按照花枝長度
進行劃分,劃分標準如下表所示.
花枝長度 | |||
鮮花等級 | 三級 | 二級 | 一級 |
某鮮切花加工企業分別從甲乙兩個種植基地購進鮮切花,現從兩個種植基地購進的鮮切花
中分別隨機抽取30個樣品,測量花枝長度并進行等級評定,所抽取樣品數據如圖所示.
(1)根據莖葉圖比較兩個種植基地鮮切花的花枝長度的平均值及分散程度(不要求計算具體值,給出結論即可);
(2)若從等級為三級的樣品中隨機選取2個進行新產品試加工,求選取的2個全部來自乙種植基地的概率;
(3)根據該加工企業的加工和銷售記錄,了解到來自乙種植基地的鮮切花的加工產品的單件利潤為4元;來自乙種植基地的鮮切花
的加工產品的單件成本為10元,銷售率(某等級產品的銷量與產量的比值)及單價如下表所示.
三級花加工產品 | 二級花加工產品 | 一級花加工產品 | |
銷售率 | |||
單價/(元/件) | 12 | 16 | 20 |
由于鮮切花加工產品的保鮮特點,未售出的產品均可按原售價的50%處理完畢.用樣本估計總體,如果僅從單件產品的利潤的角度考慮,該鮮切花加工企業應該從哪個種植基地購進鮮切花
?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,①已知點
,直線
:
,動點
滿足到點
的距離與到直線
的距離之比為
;②已知圓
的方程為
,直線
為圓
的切線,記點
到直線
的距離分別為
,動點
滿足
;③點
,
分別在
軸,
軸上運動,且
,動點
滿足
.
(1)在①,②,③這三個條件中任選一個,求動點的軌跡方程;
(2)記(1)中的軌跡為,經過點
的直線
交
于
,
兩點,若線段
的垂直平分線與
軸相交于點
,求點
縱坐標的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若數列滿足
,
,記數列
的前n項和是
,則( )
A.若數列是常數列,則
B.若,則數列
單調遞減
C.若,則
D.若,任取
中的9項
構成數列
的子數列
,則
不全是單調數列
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左,右兩個焦點為
、
,拋物線
與橢圓
有公共焦點
.且兩曲線
、
在第一象限的交點
的橫坐標為
.
(1)求橢圓和拋物線
的方程;
(2)直線與拋物線
的交點為
、
(
為坐標原點),與橢圓
的交點為
、
(
在線段
上),且
.問滿足條件的直線
有幾條,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知直角梯形ABCD中,,
,
,將直角梯形ABCD(及其內部)以AB所在直線為軸順時針旋轉90°,形成如圖所示的幾何體,其中M為
的中點.
(1)求證:;
(2)求異面直線BM與EF所成角的大小.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com