【題目】在平面直角坐標系xOy中,已知直線l的參數方程為 (t為參數,0<α<π),以原點O為極點,以x軸正半軸為極軸建立極坐標系,曲線C的極坐標方程為ρ=
(p>0).
(Ⅰ)寫出直線l的極坐標方程和曲線C的直角坐標方程;
(Ⅱ)若直線l與曲線C相交于A,B兩點,求 +
的值.
【答案】解:(I)由 得
,∴直線l的普通方程為
﹣
=0,即sinαx﹣cosαy=0. 把x=ρcosθ,y=ρsinθ代入普通方程得sinαρcosθ﹣cosαρsinθ=0.
∵ρ= ,∴p=ρ﹣ρcosθ=ρ﹣x,∴ρ=p+x,兩邊平方得ρ2=x2+2px+p2 , ∴x2+y2=x2+2px+p2 , 即y2﹣2px﹣p2=0.
(II)聯立方程組 ,解得
或
.
∴|OA|2=( )2+(
)2=
,|OB|2=(
)2+(
)2=
,
∴|OA|= ,|OB|=
.
∴ +
=
+
=
(
+
)=
【解析】(1)分別用x,y表示t,消去參數得到普通方程,再化為極坐標方程;(2)聯立方程組解出A,B坐標,代入兩點間的距離公式得出|OA|,|OB|,再進行化簡計算.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是邊長為2的菱形,∠ABC=60°,PA⊥PB,PC=2.
(1)求證:平面PAB⊥平面ABCD;
(2)若PA=PB,求二面角A﹣PC﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖1,在直角梯形中,AB∥CD,
,且
.現以
為一邊向梯形外作正方形
,然后沿邊
將正方形
翻折,使平面
與平面
垂直,如圖2.
(Ⅰ)求證:BC⊥平面DBE;
(Ⅱ)求點D到平面BEC的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設定義在(0,+∞)上的函數f(x)滿足xf′(x)﹣f(x)=xlnx,f( )=
,則f(x)( )
A.有極大值,無極小值
B.有極小值,無極大值
C.既有極大值,又有極小值
D.既無極大值,也無極小值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知極坐標系的極點與直角坐標系的原點重合,極軸與直角坐標系中x軸的正半軸重合,若曲線C的參數方程為 (α是參數),直線l的極坐標方程為
ρsin(θ﹣
)=1.
(1)將曲線C的參數方程化為極坐標方程;
(2)由直線l上一點向曲線C引切線,求切線長的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(x+ ),x∈R,且f(
)=
.
(1)求A的值;
(2)若f(θ)+f(﹣θ)= ,θ∈(0,
),求f(
﹣θ).
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com