【題目】在如圖所示的四棱錐中,四邊形
是等腰梯形,
,
,
平面
,
,
.
(1)求證:平面
;
(2)已知二面角的余弦值為
,求直線
與平面
所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)由已知可得,結合
,由直線與平面垂直的判定可得
平面
;
(2)由(1)知,,則
,
,
兩兩互相垂直,以
為坐標原點,分別以
,
,
所在直線為
,
,
軸建立空間直角坐標系,設
,0,
,由二面角
的余弦值為
求解
,再由空間向量求解直線
與平面
所成角的正弦值.
(1)證明:因為四邊形是等腰梯形,
,
,所以
.又
,所以
,
因此,
,
又,
且,
,
平面
,
所以平面
.
(2)取的中點
,連接
,
,
由于,因此
,
又平面
,
平面
,所以
.
由于,
,
平面
,
所以平面
,故
,
所以為二面角
的平面角.在等腰三角形
中,由于
,
因此,又
,
因為,所以
,所以
以為
軸、
為
軸、
為
軸建立空間直角坐標系,則
,
,
,
,
設平面的法向量為
所以,即
,令
,則
,
,
則平面的法向量
,
,
設直線與平面
所成角為
,則
科目:高中數學 來源: 題型:
【題目】已知函數,
,
,
,給出以下四個命題:①
為偶函數;②
為偶函數;③
的最小值為0;④
有兩個零點.其中真命題的是( ).
A.②④B.①③C.①③④D.①④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在黨中央的正確領導下,通過全國人民的齊心協力,特別是全體一線醫護人員的奮力救治,二月份“新冠肺炎”疫情得到了控制.甲、乙兩個地區采取防護措施后,統計了從2月7日到2月13日一周的新增“新冠肺炎”確診人數,繪制成如下折線圖:
(1)根據圖中甲、乙兩個地區折線圖的信息,寫出你認為最重要的兩個統計結論;
(2)治療“新冠肺炎”藥品的研發成了當務之急,某藥企計劃對甲地區的項目或乙地區的
項目投入研發資金,經過評估,對于
項目,每投資十萬元,一年后利潤是l.38萬元、1.18萬元、l.14萬元的概率分別為
、
、
;對于
項目,利潤與產品價格的調整有關,已知
項目產品價格在一年內進行2次獨立的調整,每次價格調整中,產品價格下調的概率都是
,記
項目一年內產品價格的下調次數為
,每投資十萬元,
取0、1、2時,一年后相應利潤是1.4萬元、1.25萬元、0.6萬元.記對
項目投資十萬元,一年后利潤的隨機變量為
,記對
項目投資十萬元,一年后利潤的隨機變量為
.
(i)求,
的概率分布列和數學期望
,
;
(ii)如果你是投資決策者,將做出怎樣的決策?請寫出決策理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】冠狀病毒是一個大型病毒家族,已知可引起感冒以及中東呼吸綜合征(MERS)和嚴重急性呼吸綜合征(SARS)等較嚴重疾病.而今年出現在湖北武漢的新型冠狀病毒(nCoV)是以前從未在人體中發現的冠狀病毒新毒株.人感染了新型冠狀病毒后常見體征有呼吸道癥狀、發熱、咳嗽、氣促和呼吸困難等,在較嚴重病例中,感染可導致肺炎、嚴重急性呼吸綜合征、腎衰竭,甚至死亡.醫院為篩查冠狀病毒,需要檢驗血液是否為陽性,現有份血液樣本,有以下兩種檢驗方式:
方式一:逐份檢驗,則需要檢驗次.
方式二:混合檢驗,將其中(
且
)份血液樣本分別取樣混合在一起檢驗.
若檢驗結果為陰性,這份的血液全為陰性,因而這
份血液樣本只要檢驗一次就夠了,如果檢驗結果為陽性,為了明確這
份血液究竟哪幾份為陽性,就要對這
份再逐份檢驗,此時這
份血液的檢驗次數總共為
.假設在接受檢驗的血液樣本中,每份樣本的檢驗結果是陽性還是陰性都是獨立的,且每份樣本是陽性結果的概率為
.
(1)現有份血液樣本,其中只有
份樣本為陽性,若采用逐份檢驗方式,求恰好經
次檢驗就能把陽性樣本全部檢驗出來的概率.
(2)現取其中(
且
)份血液樣本,記采用逐份檢驗方式,樣本需要檢驗的總次數為
,采用混合檢驗方式,樣本需要檢驗的總次為
.
(i)若,試求
關于
的函數關系式
;
(ii)若,且采用混合檢驗方式可以使得樣本需要檢驗的總次數的期望值比逐份檢驗的總次數期望值更少,求
的最大值.
參考數據:,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,
是橢圓上一動點(與左、右頂點不重合)已知
的內切圓半徑的最大值為
,橢圓的離心率為
.
(1)求橢圓C的方程;
(2)過的直線
交橢圓
于
兩點,過
作
軸的垂線交橢圓
與另一點
(
不與
重合).設
的外心為
,求證
為定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,某市為了促進生活垃圾的分類處理,將生活垃圾分為廚余垃圾、可回收物和其他垃圾三類,并分別設置了相應的垃圾箱.為調查居民生活垃圾分類投放情況,現隨機抽取了該市三類垃圾箱中總計1000噸生活垃圾,數據統計如下(單位:噸):
“廚余垃圾”箱 | “可回收物”箱 | “其他垃圾”箱 | |
廚余垃圾 | 400 | 100 | 100 |
可回收物 | 30 | 240 | 30 |
其他垃圾 | 20 | 20 | 60 |
(Ⅰ)試估計廚余垃圾投放正確的概率
(Ⅱ)試估計生活垃圾投放錯誤的概率
(Ⅲ)假設廚余垃圾在“廚余垃圾”箱、“可回收物”箱、“其他垃圾”箱的投放量分別為a,b,c,其中a>0,a+b+c=600.當數據a,b,c,的方差最大時,寫出a,b,c的值(結論不要求證明),并求此時
的值.
(注:,其中
為數據
的平均數)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com