【題目】已知橢圓Γ:的左,右焦點分別為F1(
,0),F2(
,0),橢圓的左,右頂點分別為A,B,已知橢圓Γ上一異于A,B的點P,PA,PB的斜率分別為k1,k2,滿足
.
(1)求橢圓Γ的標準方程;
(2)若過橢圓Γ左頂點A作兩條互相垂直的直線AM和AN,分別交橢圓Γ于M,N兩點,問x軸上是否存在一定點Q,使得∠MQA=∠NQA成立,若存在,則求出該定點Q,否則說明理由.
科目:高中數學 來源: 題型:
【題目】四棱錐的底面ABCD是邊長為a的菱形,
面ABCD,
,E,F分別是CD,PC的中點.
(1)求證:平面平面PAB;
(2)M是PB上的動點,EM與平面PAB所成的最大角為,求二面角
的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,則其體積為_________,若該圓柱的三視圖如圖所示,圓柱表面上的點M在正視圖上的對應點為A,圓柱表面上的點N在側視圖上的對應點為B,則在此圓柱側面上,從M到N的路徑中,最短路徑的長度為___________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱錐中,
,
,
,
,直線
與平面
成
角,
為
的中點,
,
.
(Ⅰ)若,求證:平面
平面
;
(Ⅱ)若,求直線
與平面
所成角的正弦值的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】冠狀病毒是一個大型病毒家族,已知的有中東呼吸綜合征(MERS)和嚴重急性呼吸綜合征(SARS)等較嚴重的疾病,新型冠狀病毒(nCoV)是以前從未在人體中發現的冠狀病毒新毒株,某小區為進一步做好新型冠狀病毒肺炎疫情知識的教育,在小區內開展“新型冠狀病毒防疫安全公益課”在線學習,在此之后組織了“新型冠狀病毒防疫安全知識競賽”在線活動.已知進入決賽的分別是甲、乙、丙、丁四位業主,決賽后四位業主相應的名次為第1,2,3,4名,該小區為了提高業主們的參與度和重視度,邀請小區內的所有業主在比賽結束前對四位業主的名次進行預測,若預測完全正確將會獲得禮品,現用a,b,c,d表示某業主對甲、乙、丙、丁四位業主的名次做出一種等可能的預測排列,記X=|a﹣1|+|b﹣2|+|c﹣3|+|d﹣4|.
(1)求該業主獲得禮品的概率;
(2)求X的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知的兩個頂點坐標是
,
,
的周長為
,
是坐標原點,點
滿足
.
(Ⅰ)求點的軌跡
的方程;
(Ⅱ)設不過原點的直線與曲線
交于
兩點,若直線
的斜率依次成等比數列,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知直三棱柱ABC﹣A1B1C1,E,F分別是棱CC1,AB的中點.
(1)證明:CF∥平面AEB1.
(2)若AC=BC=AA1=4,∠ACB=90°,求三棱錐B1﹣ECF的體積.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com