【題目】已知橢圓.
(1)若橢圓的右焦點坐標為
,求
的值;
(2)由橢圓上不同三點構成三角形稱為橢圓的內接三角形.若以
為直角頂點的橢圓
的內接等腰直角三角形恰有三個,求
的取值范圍.
【答案】(1) ;(2)
.
【解析】試題分析:(1)本問考查橢圓標準方程,先將橢圓方程化為標準形式, ,根據右焦點為
,則
,可以求出
的值;(2)本問考查直線與橢圓位置關系,由題分析
,則
,因此BA所在直線斜率存在且不為0,可設
的方程為
,將直線方程與橢圓方程聯立,根據弦長公式求出
,同理BC所在直線方程為
,同理求出
,根據等腰直角三角形有
,整理得到關于
的關系式,轉化為以
為變量的方程有兩個不相等的正實根問題,求
的取值范圍.
試題解析:(1)橢圓的方程可以寫成
,因為焦點
在
軸上,所以
,求得
.
(2)設橢圓內接等腰直角三角形的兩直角邊分別為
設
,顯然
與
不與坐標軸平行,且
,所以可設直線
的方程為
,則直線
的方程為
,由
,消去
得到
,所以
,求得
.同理可求
,因為
為以
為直角頂點的等腰直角三角形,所以
.所以
,整理得
,所以
,由此
,所以
或
,設
,因為以
為直角頂點的橢圓內接等腰直角三角形恰有三個,所以關于
的方程
有兩個不同的正實根
,且都不為
.所以
,解得實數
的取值范圍是
.
科目:高中數學 來源: 題型:
【題目】已知袋中裝有大小相同的2個白球、2個紅球和1個黃球.一項游戲規定:每個白球、紅球和黃球的分值分別是0分、1分和2分,每一局從袋中一次性取出三個球,將3個球對應的分值相加后稱為該局的得分,計算完得分后將球放回袋中.當出現第局得
分(
)的情況就算游戲過關,同時游戲結束,若四局過后仍未過關,游戲也結束.
(1)求在一局游戲中得3分的概率;
(2)求游戲結束時局數的分布列和數學期望
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a>0,a≠1.設命題p:函數y=loga(x+1)在(0,+∞)內單調遞減;命題q:曲線y=x2+(2a-3)x+1與x軸交于不同的兩點.若p或q為真,p且q為假,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】【2015高考湖北(理)20】某廠用鮮牛奶在某臺設備上生產兩種奶制品.生產1噸
產品需鮮牛奶2噸,使用設備1小時,獲利1000元;生產1噸
產品需鮮牛奶1.5噸,使用設備1.5小時,獲利1200元.要求每天
產品的產量不超過
產品產量的2倍,設備每天生產
兩種產品時間之和不超過12小時. 假定每天可獲取的鮮牛奶數量W(單位:噸)是一個隨機變量,其分布列為
W | 12 | 15 | 18 |
P | 0.3 | 0.5 | 0.2 |
該廠每天根據獲取的鮮牛奶數量安排生產,使其獲利最大,因此每天的最大獲利(單位:元)是一個隨機變量.
(Ⅰ)求的分布列和均值;
(Ⅱ) 若每天可獲取的鮮牛奶數量相互獨立,求3天中至少有1天的最大獲利超過10000元的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ax+ 的圖象經過點A(1,1),B(2,﹣1).
(1)求函數f(x)的解析式;
(2)判斷函數f(x)在(0,+∞)上的單調性并用定義證明;
(3)求f(x)在區間[ ,1]上的值域.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)在區間[a,b]上的圖象是連續不斷的一條曲線,有下列說法:
①若f(a)f(b)>0,則函數y=f(x)在區間(a,b)上沒有零點;
②若f(a)f(b)>0,則函數y=f(x)在區間(a,b)上可能有零點;
③若f(a)f(b)<0,則函數y=f(x)在區間(a,b)上沒有零點;
④若f(a)f(b)<0,則函數y=f(x)在區間(a,b)上至少有一個零點;
其中正確說法的序號是(把所有正確說法的序號都填上).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,拋物線:
與橢圓
:
在第一象限的交點為
,
為坐標原點,
為橢圓的右頂點,
的面積為
.
(Ⅰ)求拋物線的方程;
(Ⅱ)過點作直線
交
于
、
兩點,射線
、
分別交
于
、
兩點,記
和
的面積分別為
和
,問是否存在直線
,使得
?若存在,求出直線
的方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)= sin2x+2cos2x+m(0≤x≤
).
(1)若函數f(x)的最大值為6,求常數m的值;
(2)若函數f(x)有兩個零點x1和x2 , 求m的取值范圍,并求x1和x2的值;
(3)在(1)的條件下,若g(x)=(t﹣1)f(x)﹣ (t≥2),討論函數g(x)的零點個數.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com