精英家教網 > 高中數學 > 題目詳情

已知函數
(Ⅰ)設,求的單調區間;
(Ⅱ) 設,且對于任意,.試比較的大小.

(Ⅰ) 單調遞減區間是,單調遞增區間是 
(Ⅱ)

解析

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數
(1)若函數在區間上存在極值點,求實數的取值范圍;
(2)當時,不等式恒成立,求實數的取值范圍;
(3)求證:.(為自然對數的底數)

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,.
(Ⅰ)求的極值;
(Ⅱ)當時,若不等式上恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1) 當時,求函數的單調區間;
(2) 當時,函數圖象上的點都在所表示的平面區域內,求實數的取值范圍.
(3) 求證:,(其中,是自然對數的底).

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知定義在上的函數(其中).
(Ⅰ)解關于的不等式;
(Ⅱ)若不等式對任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

規定其中,為正整數,且=1,這是排列數(是正整數,)的一種推廣.
(Ⅰ) 求的值;
(Ⅱ)排列數的兩個性質:①,②(其中m,n是正整數).是否都能推廣到(,是正整數)的情形?若能推廣,寫出推廣的形式并給予證明;若不能,則說明理由;
(Ⅲ)已知函數,試討論函數的零點個數.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數 
(1) 當時,求函數的單調區間;
(2) 當時,求函數上的最小值和最大值

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)討論函數的單調性;
(2)若時,關于的方程有唯一解,求的值;
(3)當時,證明: 對一切,都有成立.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)求在區間上的最大值;
(2)若函數在區間上存在遞減區間,求實數m的取值范圍.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视