精英家教網 > 高中數學 > 題目詳情

【題目】設點為坐標原點,橢圓的右頂點為,上頂點為,過點且斜率為的直線與直線相交于點,且.

(1)求橢圓的離心率;

(2)是圓的一條直徑,若橢圓經過,兩點,求橢圓的方程.

【答案】(1) .

(2).

【解析】分析:(1)運用向量的坐標運算,可得M的坐標,進而得到直線OM的斜率,進而得證;

(2)由(1)知,橢圓方程設為,設PQ的方程,與橢圓聯立,運用韋達定理和中點坐標公式,以及弦長公式,解方程即可得到a,b的值,進而得到橢圓方程.

詳解:(1)∵,,所以.

,解得

于是,∴橢圓的離心率.

(2)由(1)知,∴橢圓的方程為

依題意,圓心是線段的中點,且.

由對稱性可知,軸不垂直,設其直線方程為,代入①得:

,,則,

,解得.

于是.于是

.

解得:,,∴橢圓的方程為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某地隨著經濟的發展,居民收入逐年增長,如表是該地一建設銀行連續五年的儲蓄存款(年底余額),如表1

年份x

2011

2012

2013

2014

2015

儲蓄存款y(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數據進行了處理,得到表2:

時間代號t

1

2

3

4

5

z

0

1

2

3

5

(1)求z關于t的線性回歸方程;

(2)通過(1)中的方程,求出y關于x的回歸方程;

(3)用所求回歸方程預測到2010年年底,該地儲蓄存款額可達多少?

附:對于線性回歸方程

其中, .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某書店剛剛上市了《中國古代數學史》,銷售前該書店擬定了5種單價進行試銷,每種單價(元)試銷l天,得到如表單價(元)與銷量(冊)數據:

單價(元)

18

19

20

21

22

銷量(冊)

61

56

50

48

45

(l)根據表中數據,請建立關于的回歸直線方程:

(2)預計今后的銷售中,銷量(冊)與單價(元)服從(l)中的回歸方程,已知每冊書的成本是12元,書店為了獲得最大利潤,該冊書的單價應定為多少元?

附:,,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若一個人下半身長(肚臍至足底)與全身長的比近似為,稱為黃金分割比),堪稱“身材完美”,且比值越接近黃金分割比,身材看起來越好,若某人著裝前測得頭頂至肚臍長度為72,肚臍至足底長度為103,根據以上數據,作為形象設計師的你,對TA的著裝建議是( )

A.身材完美,無需改善B.可以戴一頂合適高度的帽子

C.可以穿一雙合適高度的增高鞋D.同時穿戴同樣高度的增高鞋與帽子

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

(1)寫出函數的解析式;

(2)若直線與曲線有三個不同的交點,求的取值范圍;

(3)若直線 與曲線內有交點,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】閱讀如圖的算法框圖,輸出的結果S的值為(

A.
B.0
C.
D.-

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】從高三抽出名學生參加數學競賽,由成績得到如下的頻率分布直方圖.試利用頻率分布直方圖求:

1)這名學生成績的眾數與中位數;

2)這名學生的平均成績.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設甲、乙、丙三個乒乓球協會分別選派3,1,2名運動員參加某次比賽,甲協會運動員編號分別為,,乙協會編號為,丙協會編號分別為,,若從這6名運動員中隨機抽取2名參加雙打比賽.

(1)用所給編號列出所有可能抽取的結果;

(2)求丙協會至少有一名運動員參加雙打比賽的概率;

(3)求參加雙打比賽的兩名運動員來自同一協會的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】下列說法中:

①若,滿足,則的最大值為;

②若,則函數的最小值為

③若,滿足,則的最小值為

④函數的最小值為

正確的有__________.(把你認為正確的序號全部寫上)

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视