【題目】如圖,在平行四邊形中,
°,四邊形
是矩形,
,平面
平面
.
(1)若,求證:
;
(2)若二面角的正弦值為
,求
的值.
【答案】(1)見解析;(2)或
.
【解析】分析:連接,在
中,利用余弦定理和勾股定理,得到
,再由四邊形
為矩形,得到
,進而得到
,
,利用線面垂直的判定定理證得
面
,即可證得
;
(2)以為原點,
所在的直線為
軸,建立空間直角坐標系,求解平面
和平面
的法向量,利用向量的夾角公式,即可求解二面角的余弦值,即可求解
的值.
詳解:(1)連接,在
中,由
,由余弦定理易得
,又
,則
;同理由余弦定理易得:
,由四邊形
是矩形,則
,又平面
平面
,所以
平面
,所以
,同理
,由勾股定理易求得
,
,顯然
,故
;
由,所以
面
,所以
,所以
面
,所以
;
(2)以點為原點,
所在的直線分別為
軸,
軸,過點
與平面
垂直的直線
軸建立空間直角坐標系,則
設平面的法向量為
,則
,即
,
取,則
,即
,
同理可求得平面的法向量為
設二面角的平面角為,則
則,即
,解之得
或
,又
,
所以或
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC-中,
平面ABC,D,E,F,G分別為
,AC,
,
的中點,AB=BC=
,AC=
=2.
(Ⅰ)求證:AC⊥平面BEF;
(Ⅱ)求二面角B-CD-C1的余弦值;
(Ⅲ)證明:直線FG與平面BCD相交.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,底面ABCD為正方形,平面PAD⊥平面ABCD,點M在線段PB上,PD//平面MAC,PA=PD=,AB=4.
(1)求證:M為PB的中點;
(2)求二面角B-PD-A的大。
(3)求直線MC與平面BDP所成角的正炫值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,AA1C1C是邊長為4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求證:AA1⊥平面ABC;
(Ⅱ)求證二面角A1﹣BC1﹣B1的余弦值;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某測試團隊為了研究“飲酒”對“駕車安全”的影響,隨機選取名駕駛員先后在無酒狀態、酒后狀態下進行“停車距離”測試.試驗數據分別列于表
和表
.統計方法中,同一組數據常用該組區間的中點值作為代表.
停車距離 | |||||
頻數 |
表
平均每毫升血液酒精含量 | |||||
平均停車距離 |
表
(1)根據最小二乘法,由表的數據計算
關于
的回歸方程
;
(2)該測試團隊認為:駕駛員酒后駕車的平均“停車距離”大于無酒狀態下(表
)的停車距離平均數的
倍,則認定駕駛員是“醉駕”.請根據(1)中的回歸方程,預測當每毫升血液酒精含量大于多少毫克時為“醉駕”?
附:回歸方程中,
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著網絡的飛速發展,人們的生活發生了很大變化,其中無現金支付是一個顯著特征,某評估機構對無現金支付的人群進行網絡問卷調查,并從參與調查的數萬名受訪者中隨機選取了300人,把這300人分為三類,即使用支付寶用戶、使用微信用戶、使用銀行卡用戶,各類用戶的人數如圖所示,同時把這300人按年齡分為青年人組與中年人組,制成如圖所示的列聯表:
支付寶用戶 | 非支付寶用戶 | 合計 | |
中老年 | 90 | ||
青年 | 120 | ||
合計 | 300 |
(1) 完成列聯表,并判斷是否有99%的把握認為使用支付寶用戶與年齡有關系?
(2)把頻率作為概率,從所有無現金支付用戶中(人數很多)隨機抽取3人,用表示所選3人中使用支付寶用戶的人數,求
的分布列與數學期望.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,
。
Ⅰ.求函數的最小正周期和單調遞增區間;
Ⅱ.當時,方程
恰有兩個不同的實數根,求實數
的取值范圍;
Ⅲ.將函數的圖象向右平移
個單位后所得函數
的圖象關于原點中心對稱,求
的最小值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com