【題目】已知定義在區間[﹣ ,π]上的函數y=f(x)的圖象關于直線x=
對稱,當x≥
時,函數y=sinx.
(1)求f(﹣ ),f(﹣
)的值;
(2)求y=f(x)的表達式
(3)若關于x的方程f(x)=a有解,那么將方程在a取某一確定值時所求得的所有解的和記為Ma , 求Ma的所有可能取值及相應a的取值范圍.
【答案】
(1)解:f(﹣ )=f(π)=sinπ=0,
f(﹣ )=f(
)=sin
=
(2)解:設﹣ ,則
,
∴f(x)=f( )=sin(
)=cosx,
∴f(x)=
(3)解:作函數f(x)的圖象如下:
顯然,若f(x)=a有解,則a∈[0,1].
① 若0 ,f(x)=a有兩解,Ma=
;
②若a= ,f(x)=a有三解,Ma=
;
③若 <a<1,f(x)=a有四解,Ma=π;
④若a=1,f(x)=a有兩解,Ma= ;
綜上所述,當0≤a< 或a=1時,f(x)=a有兩解,Ma=
;
當a= 時,f(x)=a有三解,Ma=
;
當 時,f(x)=a有四解,Ma=π
【解析】(1)由題意可求f(﹣ )=f(π)=sinπ=0,f(﹣
)=f(
)=sin
=
.(2)設﹣
,則
,由f(x)=f(
)=sin(
)=cosx,即可解得分段函數的解析式f(x)=
.(3)作函數f(x)的圖象,若f(x)=a有解,則a∈[0,1],分情況討論即可得解.
科目:高中數學 來源: 題型:
【題目】某算法的程序圖如圖所示,其中輸入的變量x在1,2,3,…,30這30個整數中等可能隨機產生.
(1)分別求出按程序框圖正確編程運行時輸出y的值為i的概率Pi(i=1,2,3);
(2)甲、乙兩同學依據自己對程序框圖的理解,各自編寫程序重復運行n次后,統計記錄了輸出y的值為i(i=1,2,3)的頻數,下面是甲、乙所作頻數統計表的部分數據: 甲的頻數統計表(部分)
運行次數 | 輸出y=1的頻數 | 輸出y=2的頻數 | 輸出y=3的頻數 |
50 | 24 | 19 | 7 |
… | … | … | … |
2000 | 1027 | 776 | 197 |
乙的頻數統計表(部分)
運行次數 | 輸出y=1的頻數 | 輸出y=2的頻數 | 輸出y=3的頻數 |
50 | 26 | 11 | 13 |
… | … | … | … |
2000 | 1051 | 396 | 553 |
當n=2000時,根據表中的數據,分別寫出甲、乙所編程序各自輸出y的值為i(i=1,2,3)的頻率(用分數表示),并判斷甲、乙中誰所編寫的程序符合算法要求的可能性較大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對某校高一年級學生參加社區服務次數進行統計,隨機抽取名學生作為樣本,得到這
名學生參加社區服務的次數.根據此數據作出了頻數與頻率的統計表和頻率分布直方圖如下:
分組 | 頻數 | 頻率 |
10 | 0.25 | |
25 | ||
2 | 0.05 | |
合計 | 1 |
(1)求出表中及圖中
的值;
(2)試估計他們參加社區服務的平均次數;
(3)在所取樣本中,從參加社區服務的次數不少于20次的學生中任選2人,求至少1人參加社區服務次數在區間內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學將100名高二文科生分成水平相同的甲、乙兩個“平行班”,每班50人.陳老師采用A,B兩種不同的教學方式分別在甲、乙兩個班進行教改實驗.為了了解教學效果,期末考試后,陳老師對甲、乙兩個班級的學生成績進行統計分析,畫出頻率分布直方圖(如下圖).記成績不低于90分者為“成績優秀”.
(Ⅰ)根據頻率分布直方圖填寫下面2×2列聯表;
甲班(A方式) | 乙班(B方式) | 總計 | |
成績優秀 | |||
成績不優秀 | |||
總計 |
(Ⅱ)判斷能否在犯錯誤的概率不超過0.05的前提下認為:“成績優秀”與教學方式有關?
附:.
P(K2≥k) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
是矩形,面
底面
,且
是邊長為
的等邊三角形,
,
在
上,且
∥面BDM.
(1)求直線PC與平面BDM所成角的正弦值;
(2)求平面BDM與平面PAD所成銳二面角的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在研究塞卡病毒(Zika virus)某種疫苗的過程中,為了研究小白鼠連續接種該種疫苗后出現癥狀的情況,做接種試驗,試驗設計每天接種一次,連續接種3天為一個接種周期.已知小白鼠接種后當天出現
癥狀的概率為
,假設每次接種后當天是否出現
癥狀與上次接種無關.
(1)若出現癥狀即停止試驗,求試驗至多持續一個接種周期的概率;
(2)若在一個接種周期內出現3次 癥狀,則這個接種周期結束后終止試驗,試驗至多持續3個周期,設接種試驗持續的接種周期數為
,求
的分布列及數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com