【題目】已知數列{an}滿足a1=3,a2,且2an+1=3an﹣an-1.
(1)求證:數列{an+1﹣an}是等比數列,并求數列{an}通項公式;
(2)求數列{nan}的前n項和為Tn,若對任意的正整數n恒成立,求k的取值范圍.
科目:高中數學 來源: 題型:
【題目】國慶70周年慶典磅礴而又歡快的場景,仍歷歷在目.已知慶典中某省的游行花車需要用到某類花卉,而該類花卉有甲、乙兩個品種,花車的設計團隊對這兩個品種進行了檢測.現從兩個品種中各抽測了10株的高度,得到如下莖葉圖.下列描述正確的是( )
A.甲品種的平均高度大于乙品種的平均高度,且甲品種比乙品種長的整齊
B.甲品種的平均高度大于乙品種的平均高度,但乙品種比甲品種長的整齊
C.乙品種的平均高度大于甲品種的平均高度,且乙品種比甲品種長的整齊
D.乙品種的平均高度大于甲品種的平均高度,但甲品種比乙品種長的整齊
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設是首項為a,公差為d的等差數列(d≠0),
是其前n項的和.記
,n∈N*,其中c為實數.
(1)若c=0,且b1,b2,b4成等比數列,證明:Snk=n2Sk(k,n∈N*);
(2)若{}是等差數列,證明:c=0.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若函數對任意的
均有
則稱函數
具有性質
(Ⅰ)判斷下面兩個函數是否具有性質并說明理由.
①②
(Ⅱ)若函數具有性質
,且
求證:對任意有
(Ⅲ)在(Ⅱ)的條件下,是否對任意均有
若成立,給出證明;若不成立,給出反例.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著智能手機和電子閱讀器越來越普及,人們的閱讀習慣也發生了改變,手機和電子閱讀產品方便易攜帶,越來越多的人習慣通過手機或電子閱讀器閱讀.某電子書閱讀器廠商隨機調查了人,統計了這
人每日平均通過手機或電子閱讀器閱讀的時間(單位:分鐘),由統計數據得到如下頻率分布直方圖,已知閱讀時間在
,
,
三組對應的人數依次成等差數列.
(1)求頻率分布直方圖中,
的值;
(2)若將日平均閱讀時間不少于分鐘的用戶定義為“電子閱讀發燒友”,將日平均閱讀時間少于
分鐘的用戶定義為“電子閱讀潛在愛好者”,現從上述“電子閱讀發燒友”與“電子閱讀潛在愛好者”的人中按分層抽樣選出
人,再從這
人中任取
人,求恰有
人為“電子閱讀發燒友”的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C的中心在原點,焦點在x軸上,離心率等于,它的一個頂點恰好是拋物線
的焦點.
(Ⅰ)求橢圓C的方程;
(Ⅱ)點P(2,3), Q(2,-3)在橢圓上,A,B是橢圓上位于直線PQ兩惻的動點,
①若直線AB的斜率為,求四邊形APBQ面積的最大值;
②當A、B運動時,滿足于∠APQ=∠BPQ,試問直線AB的斜率是否為定值,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知分別是橢圓C:
的左、右焦點,其中右焦點為拋物線
的焦點,點
在橢圓C上.
(1)求橢圓C的標準方程;
(2)設與坐標軸不垂直的直線過
與橢圓C交于A、B兩點,過點
且平行直線
的直線交橢圓C于另一點N,若四邊形MNBA為平行四邊形,試問直線
是否存在?若存在,請求出
的斜率;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com