【題目】某城市戶居民的月平均用電量(單位:度),以
,
,
,
,
,
,
分組的頻率分布直方圖如圖.
(1)求直方圖中的值;
(2)求月平均用電量的眾數和中位數;
(3)在月平均用電量為,
,
,
的四組用戶中,用分層抽樣的方法抽取
戶居民,則月平均用電量在
的用戶中應抽取多少戶?
【答案】(1);(2)
,
;(3)
.
【解析】試題分析:(1)由直方圖的性質可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1,解方程可得;(2)由直方圖中眾數為最高矩形上端的中點可得,可得中位數在[220,240)內,設中位數為a,解方程(0.002+0.0095++0.011)×20+0.0125×(a-220)=0.5可得;(3)可得各段的用戶分別為25,15,10,5,可得抽取比例,可得要抽取的戶數
試題解析:(1)由直方圖的性質可得(0.002+0.0095+0.011+0.0125+x+0.005+0.0025)×20=1得:
x=0.0075,所以直方圖中x的值是0.0075. ------------- 3分
(2)月平均用電量的眾數是=230. ------------- 5分
因為(0.002+0.0095+0.011)×20=0.45<0.5,所以月平均用電量的中位數在[220,240)內,
設中位數為a,
由(0.002+0.0095+0.011)×20+0.0125×(a-220)=0.5
得:a=224,所以月平均用電量的中位數是224. ------------ 8分
(3)月平均用電量為[220,240]的用戶有0.0125×20×100=25戶,
月平均用電量為[240,260)的用戶有0.0075×20×100=15戶,
月平均用電量為[260,280)的用戶有0. 005×20×100=10戶,
月平均用電量為[280,300]的用戶有0.0025×20×100=5戶, -------------10分
抽取比例==
,所以月平均用電量在[220,240)的用戶中應抽取25×
=5戶.-- 12分
科目:高中數學 來源: 題型:
【題目】某測試團隊為了研究“飲酒”對“駕車安全”的影響,隨機選取100名駕駛員先后在無酒狀態、酒后狀態下進行“停車距離”測試.測試的方案:電腦模擬駕駛,以某速度勻速行駛,記錄下駕駛員的“停車距離”(駕駛員從看到意外情況到車子停下所需的距離),無酒狀態與酒后狀態下的實驗數據分別列于表1和表2.
表1:
停車距離 | |||||
頻數 | 26 | 40 | 24 | 8 | 2 |
表2:
平均每毫升血液酒精含量 | 10 | 30 | 50 | 70 | 90 |
平均停車距離 | 30 | 50 | 60 | 70 | 90 |
請根據表1,表2回答以下問題.
(1)根據表1估計駕駛員無酒狀態下停車距離的平均數;
(2)根據最小二乘法,由表2的數據計算關于
的回歸方程.
(3)該測試團隊認為:駕駛員酒后駕車的“平均停車距離”大于(1)中無酒狀態下的停車距離平均數的3倍,則認定駕駛員是“醉駕”.請根據(2)中的回歸方程,預測當每毫升血液酒精含量大于多少毫克時為“醉駕”?參考公式:
,
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數
(1)當a=1時,求函數f(x)在x=e﹣1處的切線方程;
(2)當 時,討論函數f(x)的單調性;
(3)若x>0,求函數 的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了研究“晚上喝綠茶與失眠”有無關系,調查了100名人士,得到下面的列聯表:
失眠 | 不失眠 | 合計 | |
晚上喝綠茶 | 16 | 40 | 56 |
晚上不喝綠茶 | 5 | 39 | 44 |
合計 | 21 | 79 | 100 |
由已知數據可以求得:,則根據下面臨界值表:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |
可以做出的結論是( )
A. 在犯錯誤的概率不超過0.01的前提下認為“晚上喝綠茶與失眠有關”
B. 在犯錯誤的概率不超過0.01的前提下認為“晚上喝綠茶與失眠無關”
C. 在犯錯誤的概率不超過0.05的前提下認為“晚上喝綠茶與失眠有關”
D. 在犯錯誤的概率不超過0.05的前提下認為“晚上喝綠茶與失眠無關”
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若以直角坐標系xOy的O為極點,Ox為極軸,選擇相同的長度單位建立極坐標系,得曲線C的極坐標方程是ρ= .
(1)將曲線C的極坐標方程化為直角坐標方程,并指出曲線是什么曲線;
(2)若直線l的參數方程為 (t為參數)當直線l與曲線C相交于A,B兩點,求|
|
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=sinωx(>0)的圖象向右平移 個單位得到函數y=g(x)的圖象,并且函數g(x)在區間[
,
]上單調遞增,在區間[
]上單調遞減,則實數ω的值為( )
A.
B.
C.2
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知正項數列的前
項和為
,滿足
.
(Ⅰ)(i)求數列的通項公式;
(ii)已知對于,不等式
恒成立,求實數
的最小值;
(Ⅱ) 數列的前
項和為
,滿足
,是否存在非零實數
,使得數列
為等比數列? 并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com