精英家教網 > 高中數學 > 題目詳情
已知等差數列的前項和為,且、成等比數列.
(1)求的值;
(2)若數列滿足,求數列的前項和.
(1),;(2).

試題分析:(1)解法1是先令求出的表達式,然后令,得到計算出的表達式,利用為等差數列得到滿足通式,從而求出的值,然后利用條件成等比數列列方程求出的值,從而求出、的值;解法2是在數列是等差數列的前提下,設其公差為,利用公式以及對應系數相等的特點得到、之間的等量關系,然后利用條件成等比數列列方程求出的值,從而求出、的值;(2)解法1是在(1)的前提下求出數列的通項公式,然后利用錯位相減法求數列的和;解法2是利用導數以及函數和的導數運算法則,將數列的前項和
視為函數列的前項和在處的導數值,從而求出.
試題解析:(1)解法1:當時,
時,
.
是等差數列,
,得.
,,
、成等比數列,
,即,解得.
解法2:設等差數列的公差為,
.

,.,,.
成等比數列,,
,解得.
;
(2)解法1:由(1)得.
.
,①
,②
②得.
.
解法2:由(1)得.
,.
,①
,
兩邊對取導數得,.
,得.
.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知數列的前項和為,對一切正整數,點都在函數的圖象上.
(1)求,
(2)求數列的通項公式;
(3)若,求證數列的前項和

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

數列{2n·3n}的前n項和Tn=________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知數列,,,為數列的前項和,為數列的前項和.
(1)求數列的通項公式;
(2)求數列的前項和;
(3)求證:.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

數列{an}滿足a1+2a2+22a3+…+2n-1an=4n.
⑴求通項an;
⑵求數列{an}的前n項和 Sn.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

數列中,(其中),若其前n項和,則   .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

若數列滿足,且,設數列的前項和為,則=.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

數列的前項和為,若,則等于(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知是由正數組成的等比數列,表示的前項的和,若,,則的值是 (   )
A.B.C.D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视