【題目】已知集合,若對于任意
,存在
,使得
成立,則稱集合是“好集合”.給出下列4個集合:①
;②
;③
;④
.其中為“好集合”的序號是( )
A. ①②④ B. ②③ C. ③④ D. ①③④
【答案】B
【解析】對于①y= 是以x,y軸為漸近線的雙曲線,漸近線的夾角是90°,所以在同一支上,任意(x1,y1)∈M,不存在(x2,y2)∈M,滿足好集合的定義;在另一支上對任意(x1,y1)∈M,不存在(x2,y2)∈M,使得x1x2+y1y2=0成立,所以不滿足好集合的定義,不是好集合.
對于②M={(x,y)|y=ex-2},如圖(2)如圖紅線的直角始終存在,對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,例如取M(0,-1),則N(ln2,0),滿足好集合的定義,
所以是好集合;正確.
對于③M={(x,y)|y=cosx},如圖(3)對于任意(x1,y1)∈M,存在(x2,y2)∈M,使得x1x2+y1y2=0成立,例如(0,1)、(π,0),滿足好集合的定義,所以M是好集合;正確.
對于④M={(x,y)|y=lnx},如圖(4)取點(1,0),曲線上不存在另外的點,使得兩點與原點的連線互相垂直,所以不是好集合.
所以②③正確.
故選B.
科目:高中數學 來源: 題型:
【題目】已知橢圓的左焦點
的離心率為
是
和
的等比中項.
(1)求曲線的方程;
(2)傾斜角為的直線過原點
且與
交于
兩點,傾斜角為
的直線過
且與
交于
兩點,若
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四邊形ABCD是平行四邊形,點P是平面ABCD外一點,M是PC的中點,在DM上取一點G,過G和AP作平面交平面BDM于GH.求證:
(1)AP∥平面BDM;
(2)AP∥GH.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com