【題目】近幾年,電商行業的蓬勃發展也帶動了快遞業的高速發展.某快遞配送站每天至少要完成1800件包裹的配送任務,該配送站有8名新手快遞員和4名老快遞員,但每天最多安排10人進行配送.已知每個新手快遞員每天可配送240件包裹,日工資320元;每個老快遞員每天可配送300件包裹,日工資520元.
(1)求該配送站每天需支付快遞員的總工資最小值;
(2)該配送站規定:新手快遞員某個月被評為“優秀”,則其下個月的日工資比這個月提高12%.那么新手快遞員至少連續幾個月被評為“優秀”,日工資會超過老快遞員?
(參考數據: ,
,
.)
【答案】(1)2560;(2)新手快遞員至少連續5 個月被評為“優秀”,日工資會超過老快遞員
【解析】試題分析:(1)安排新手快遞員人,老快遞員
人,根據題目列出二者所滿足的關系式,是二元不等式組設目標函數為
,畫出可行域,分析圖像得到最值即可,注意最值點必須是整數點;(2)設新手快遞員連續
個月被評為“優秀,根據題意列出式子得到
,解出不等式即可。
(1)設安排新手快遞員人,老快遞員
人,則有
,即
,該配送站每天需支付快遞員總工資為
.作出可行域如圖所示.
作直線,平移可得到一組與
平行的直線
,由題設
是可行域內的整點的橫、縱坐標.在可行域內的整點中,點
使
取最小值,即當
過點
時,
最小,
即 (元),即該配送站每天需支付快遞員的總工資最小值為2560元.
(2)設新手快遞員連續個月被評為“優秀”,日工資會超過老員工,則由題意可得
.轉化得
,兩邊求對數可得
,所以
,又因為
,所以
最小為5,即新手快遞員至少連續5 個月被評為“優秀”,日工資會超過老快遞員.
科目:高中數學 來源: 題型:
【題目】已知橢圓 的左、右焦點分別為F1、F2 , 短軸兩個端點為A、B,且四邊形F1AF2B是邊長為2的正方形.
(1)求橢圓的方程;
(2)若C、D分別是橢圓長的左、右端點,動點M滿足MD⊥CD,連接CM,交橢圓于點P.證明: 為定值.
(3)在(2)的條件下,試問x軸上是否存異于點C的定點Q,使得以MP為直徑的圓恒過直線DP、MQ的交點,若存在,求出點Q的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某種產品的廣告費支出x(單位:萬元)與銷售額y(單位:萬元)之間有如表對應數據:
x | 2 | 4 | 5 | 6 | 8 |
y | 30 | 40 | 60 | 50 | 70 |
(1)求回歸直線方程;
附:回歸直線的斜率和截距的最小二乘估計公式分別為: .
(2)試預測廣告費支出為10萬元時,銷售額多大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知兩平行直線4x﹣2y+7=0,2x﹣y+1=0之間的距離等于坐標原點O到直線l:x﹣2y+m=0的距離的一半.
(1)求m的值;
(2)判斷直線l與圓 的位置關系.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)=4sinωxsin(ωx+ )﹣1(ω>0),f(x)的最小正周期為π. (Ⅰ)當x∈[0,
]時,求f(x)的最大值;
(Ⅱ)請用“五點作圖法”畫出f(x)在[0,π]上的圖象.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】近年來,我國許多省市霧霾天氣頻發,為增強市民的環境保護意識,某市面向全市征召名義務宣傳志愿者,成立環境保護宣傳組織,現把該組織的成員按年齡分成
組第
組
,第
組
,第
組
,第
組
,第
組
,得到的頻率分布直方圖如圖所示,已知第
組有
人.
(1)求該組織的人數;
(2)若在第組中用分層抽樣的方法抽取
名志愿者參加某社區的宣傳活動,應從第
組各抽取多少名志愿者?
(3)在(2)的條件下,該組織決定在這名志愿者中隨機抽取
名志愿者介紹宣傳經驗,求第
組至少有
名志愿者被抽中的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,橢圓
的焦距為2,且過點
.
(1)求橢圓的方程;
(2)若點分別是橢圓
的左右頂點,直線
經過點
且垂直與軸,點
是橢圓上異于
的任意一點,直線
交
于點
.
①設直線的斜率為
,直線
的斜率為
,求證:
為定值;
②設過點垂直于
的直線為
,求證:直線
過定點,并求出定點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=Asin(ωx+φ)+B(A>0,ω>0)的一系列對應值如下表:
x | |||||||
y | ﹣1 | 1 | 3 | 1 | ﹣1 | 1 | 3 |
(1)根據表格提供的數據求函數f(x)的一個解析式.
(2)根據(1)的結果,若函數y=f(kx)(k>0)周期為 ,當
時,方程f(kx)=m恰有兩個不同的解,求實數m的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com