精英家教網 > 高中數學 > 題目詳情

【題目】若動點到定點與定直線的距離之和為4.

1)求點的軌跡方程,并畫出方程的曲線草圖;

2)記(1)得到的軌跡為曲線,問曲線上關于點)對稱的不同點有幾對?請說明理由.

【答案】1;作圖見解析;(2)答案不唯一,具體見解析.

【解析】

1)設,由題意,分類討論,可得點的軌跡方程,并畫出方程的曲線草圖;

2)當顯然不存在符合題意的對稱點,當時,注意到曲線關于軸對稱,至少存在一對(關于軸對稱的)對稱點,再研究曲線上關于對稱但不關于軸對稱的對稱點即可.

解:(1)設,由題意

:當時,有,

化簡得:

:當時,有

化簡得:(二次函數)

綜上所述:點的軌跡方程為(如圖):

2)當顯然不存在符合題意的對稱點,

時,注意到曲線關于軸對稱,至少存在一對(關于軸對稱的)對稱點.

下面研究曲線上關于對稱但不關于軸對稱的對稱點

是軌跡上任意一點,

,

它關于的對稱點為,

由于點在軌跡上,

所以,

聯立方程組*)得

化簡得

時,,此時方程組(*)有兩解,

即增加有兩組對稱點.

時,,此時方程組(*)只有一組解,

即增加一組對稱點.(注:對稱點為,

時,,此時方程組(*)有兩解為,,

沒有增加新的對稱點.

綜上所述:記對稱點的對數為.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,對于點、直線,我們稱為點到直線的方向距離.

1)設橢圓上的任意一點到直線,的方向距離分別為,求的取值范圍.

2)設點到直線的方向距離分別為、,試問是否存在實數,對任意的都有成立?若存在,求出的值;不存在,說明理由.

3)已知直線和橢圓,設橢圓的兩個焦點,到直線的方向距離分別為滿足,且直線軸的交點為、與軸的交點為,試比較的長與的大小.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為了更好地支持中小型企業的發展,某市決定對部分企業的稅收進行適當的減免,某機構調查了當地的中小型企業年收入情況,并根據所得數據畫出了樣本的頻率分布直方圖,下面三個結論:

樣本數據落在區間的頻率為0.45

如果規定年收入在500萬元以內的企業才能享受減免稅政策,估計有55%的當地中小型企業能享受到減免稅政策;

樣本的中位數為480萬元.

其中正確結論的個數為( )

A.0B.1C.2D.3

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設橢圓,定義橢圓C相關圓E:.若拋物線的焦點與橢圓C的右焦點重合,且橢圓C的短軸長與焦距相等.

1)求橢圓C及其相關圓E的方程;

2)過相關圓E上任意一點P作其切線l,若l 與橢圓交于A,B兩點,求證:為定值(為坐標原點);

3)在(2)的條件下,求面積的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在極坐標系中,已知點MN的極坐標分別為,直線l的方程為.

1)求以線段MN為直徑的圓C的極坐標方程;

2)求直線l被(1)中的圓C所截得的弦長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數,

1)試判斷函數的單調性;

2)是否存在實數,使函數的極值大于?若存在,求的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】冬季歷來是交通事故多發期,面臨著貨運高危運行、惡劣天氣頻發、包車客運監管漏洞和農村交通繁忙等四個方面的挑戰.全國公安交管部門要認清形勢、正視問題,針對近期事故暴露出來的問題,強薄羽、補短板、堵漏洞,進一步推動五大行動,鞏固擴大五大行動成果,全力確保冬季交通安全形勢穩定.據此,某網站推出了關于交通道路安全情況的調查,通過調查年齡在的人群,數據表明,交通道路安全仍是百姓最為關心的熱點,參與調查者中關注此類問題的約占80%,現從參與調查并關注交通道路安全的人群中隨機選出100人,并將這100人按年齡分組:第1,第2,第3,第4,第5,得到的頻率分布直方圖如圖所示.

1)求這100人年齡的樣本平均數(同一組數據用該區間的中點值作代表)和中位數(精確到小數點后一位);

2)現在要從年齡較大的第4,5組中用分層抽樣的方法抽取8人,再從這8人中隨機抽取3人進行問卷調查,求第4組恰好抽到2人的概率;

3)若從所有參與調查的人(人數很多)中任意選出3人,設其中關注交通道路安全的人數為隨機變量X,求X的分布列與數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列{an}滿足a1=1,對任意nN*都有an+1=an+n+1,則=(    )

A.B.C.D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的中心在坐標原點,且經過點,它的一個焦點與拋物線E的焦點重合,斜率為k的直線l交拋物線EAB兩點,交橢圓CD兩點.

(1)求橢圓的方程;

(2)直線l經過點,設點,且的面積為,求k的值;

(3)若直線l過點,設直線,的斜率分別為,,且,,成等差數列,求直線l的方程.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视