精英家教網 > 高中數學 > 題目詳情

【題目】在平面直角坐標系中,對于點、直線,我們稱為點到直線的方向距離.

1)設橢圓上的任意一點到直線,的方向距離分別為,求的取值范圍.

2)設點、到直線的方向距離分別為,試問是否存在實數,對任意的都有成立?若存在,求出的值;不存在,說明理由.

3)已知直線和橢圓,設橢圓的兩個焦點到直線的方向距離分別為、滿足,且直線軸的交點為、與軸的交點為,試比較的長與的大小.

【答案】(1)(2)存在實數,(3)

【解析】

1)由題意、,于是,又,即可求的取值范圍.

2)由題意,于是,可得對任意的都成立,即可得出結論;

3)確定,,即可比較的長與的大小.

1)由點在橢圓上,所以

由題意、,于是

,即

2)假設存在實數,滿足題設,

由題意,

于是

對任意的都成立

只要即可,所以

故存在實數,,對任意的都有成立.

3)設,的坐標分別為、,于是

、于是

,

所以

綜上.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數,,當時,恒有;

1)求的表達式;

2)設不等式,的解集為,且,求實數的取值范圍;

3)若方程的解集為,求實數的取值范圍;

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】市場上有一種新型的強力洗衣粉,特點是去污速度快,已知每投放)個單位的洗衣粉液在一定量水的洗衣機中,它在水中釋放的濃度(克/升)隨著時間(分鐘)變化的函數關系式近似為,其中,若多次投放,則某一時刻水中的洗衣液濃度為每次投放的洗衣液在相應時刻所釋放的濃度之和,根據經驗,當水中洗衣液的濃度不低于4(克/升)時,它才能起有效去污的作用.

1)若只投放一次4個單位的洗衣液,則有效去污時間可能達幾分鐘?

2)若先投放2個單位的洗衣液,6分鐘后投放個單位的洗衣液,要使接下來的4分鐘中能夠持續有效去污,試求的最小值(精確到0.1,參考數據: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】過雙曲線的右支上的一點P作一直線l與兩漸近線交于A、B兩點,其中P的中點;

1)求雙曲線的漸近線方程;

2)當P坐標為時,求直線l的方程;

3)求證:是一個定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在數列中,若是正整數,且,則稱D-數列”.

(1) 舉出一個前五項均不為零的D-數列”(只要求依次寫出該數列的前五項)

(2) D-數列中,,數列滿足,,寫出數列的通項公式,并分別判斷當時,的極限是否存在,如果存在,求出其極限值(若不存在不需要交代理由);

(3) 證明: D-數列中的最大項為,證明: .

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若數列項和為

(1)若首項,且對于任意的正整數均有,(其中為正實常數),試求出數列的通項公式.

(2)若數列是等比數列,公比為,首項為,為給定的正實數,滿足:①,且②對任意的正整數,均有;試求函數的最大值(用表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為實數,函數

1)若函數是偶函數,求實數的值;

2)若,求函數的最小值;

3)對于函數,在定義域內給定區間,如果存在,滿足,則稱函數是區間上的平均值函數,是它的一個均值點.如函數上的平均值函數,就是它的均值點.現有函數是區間上的平均值函數,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數fx)=|xa|+|x+1|aR),gx)=|2x1|+2.

1)若a1,證明:不等式fxgx)對任意的xR成立;

2)若對任意的mR,都有tR,使得fm)=gt)成立,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若動點到定點與定直線的距離之和為4.

1)求點的軌跡方程,并畫出方程的曲線草圖;

2)記(1)得到的軌跡為曲線,問曲線上關于點)對稱的不同點有幾對?請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视