【題目】若數列前
項和為
(1)若首項,且對于任意的正整數
均有
,(其中
為正實常數),試求出數列
的通項公式.
(2)若數列是等比數列,公比為
,首項為
,
為給定的正實數,滿足:①
,且
②對任意的正整數
,均有
;試求函數
的最大值(用
和
表示)
科目:高中數學 來源: 題型:
【題目】已知函數,當
,
時,
的值域為
,
,當
,
時,
的值域為
,
,依此類推,一般地,當
,
時,
的值域為
,
,其中
、
為常數,且
,
.
(1)若,求數列
,
的通項公式;
(2)若,問是否存在常數
,使得數列
滿足
?若存在,求
的值;若不存在,請說明理由;
(3)若,設數列
,
的前
項和分別為
,
,求
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】經過多年的運作,“雙十一”搶購活動已經演變成為整個電商行業的大型集體促銷盛宴.為迎接2014年“雙十一”網購狂歡節,某廠家擬投入適當的廣告費,對網上所售產品進行促銷.經調查測算,該促銷產品在“雙十一”的銷售量p萬件與促銷費用x萬元滿足(其中
,a為正常數).已知生產該產品還需投入成本
萬元(不含促銷費用),產品的銷售價格定為
元/件,假定廠家的生產能力完全能滿足市場的銷售需求.
(1)將該產品的利潤y萬元表示為促銷費用x萬元的函數;
(2)促銷費用投入多少萬元時,廠家的利潤最大?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某加油站擬建造如圖所示的鐵皮儲油罐(不計厚度,長度單位為米),其中儲油罐的中間為圓柱形,左右兩端均為半球形,(
為圓柱的高,為球的半徑,
).假設該儲油罐的建造費用僅與其表面積有關.已知圓柱形部分每平方米建造費用為
千元,半球形部分每平方米建造費用為
千元.設該儲油罐的建造費用為
千元.
(1) 寫出關于
的函數表達式,并求該函數的定義域;
(2) 若預算為萬元,求所能建造的儲油罐中
的最大值(精確到
),并求此時儲油罐的體積
(單位: 立方米,精確到
立方米).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,對于點
、直線
,我們稱
為點
到直線
的方向距離.
(1)設橢圓上的任意一點
到直線
,
的方向距離分別為
、
,求
的取值范圍.
(2)設點、
到直線
的方向距離分別為
、
,試問是否存在實數
,對任意的
都有
成立?若存在,求出
的值;不存在,說明理由.
(3)已知直線和橢圓
,設橢圓
的兩個焦點
,
到直線
的方向距離分別為
、
滿足
,且直線
與
軸的交點為
、與
軸的交點為
,試比較
的長與
的大小.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(1)若動點到定點
的距離與到定直線
:
的距離之比為
,求證:動點
的軌跡是橢圓;
(2)設(1)中的橢圓短軸的上頂點為,試找出一個以點
為直角頂點的等腰直角三角形
,并使得
、
兩點也在橢圓上,并求出
的面積;
(3)對于橢圓(常數
),設橢圓短軸的上頂點為
,試問:以點
為直角頂點,且
、
兩點也在橢圓上的等腰直角三角形
有幾個?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某家電公司銷售部門共有200位銷售員,每位部門對每位銷售員都有1400萬元的年度銷售任務,已知這200位銷售員去年完成銷售額都在區間(單位:百萬元)內,現將其分成5組,第1組,第2組,第3組,第4組,第5組對應的區間分別為
,
,
,
,
,繪制出頻率分布直方圖.
(1)求的值,并計算完成年度任務的人數;
(2)用分層抽樣從這200位銷售員中抽取容量為25的樣本,求這5組分別應抽取的人數;
(3)現從(2)中完成年度任務的銷售員中隨機選取2位,獎勵海南三亞三日游,求獲得此獎勵的2位銷售員在同一組的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com