【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,圓的參數方程為
(
為參數).以坐標原點為極點,
軸的正半軸為極軸建立極坐標系,直線
的極坐標方程為
.
(1)求圓的普通方程和直線
的直角坐標方程;
(2)若直線與圓
交于
兩點,
是圓
上不同于
兩點的動點,求
面積的最大值.
科目:高中數學 來源: 題型:
【題目】在長方體ABCD-A1B1C1D1中(如圖),AD=AA1=1,AB=2,點E是棱AB的中點.
(1)求異面直線AD1與EC所成角的大。
(2)《九章算術》中,將四個面都是直角三角形的四面體稱為鱉臑,試問四面體D1CDE是否為鱉臑?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知以點C(t∈R,t≠0)為圓心的圓與x軸交于點O和點A,與y軸交于點O和點B,其中O為原點.
(1)求證:△OAB的面積為定值;
(2)設直線y=-2x+4與圓C交于點M,N,若OM=ON,求圓C的方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某中學隨機選取了名男生,將他們的身高作為樣本進行統計,得到如圖所示的頻率分布直方圖.觀察圖中數據,完成下列問題.
(Ⅰ)求的值及樣本中男生身高在
(單位:
)的人數;
(Ⅱ)假設同一組中的每個數據可用該組區間的中點值代替,通過樣本估計該校全體男生的平均身高;
(Ⅲ)在樣本中,從身高在和
(單位:
)內的男生中任選兩人,求這兩人的身高都不低于
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】中央政府為了應對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”.為了解人們對“延遲退休年齡政策”的態度,責成人社部進行調研.人社部從網上年齡在15~65歲的人群中隨機調查100人,調查數據的頻率分布直方圖和支持“延遲退休”的人數與年齡的統計結果如下:
(1)由以上統計數據填列聯表,并判斷能否在犯錯誤的概率不超過0.05的前提下認為以45歲為分界點的不同人群對“延遲退休年齡政策”的支持度有差異;
(2)若以45歲為分界點,從不支持“延遲退休”的人中按分層抽樣的方法抽取8人參加某項活動.現從這8人中隨機抽2人.
①抽到1人是45歲以下時,求抽到的另一人是45歲以上的概率.
②記抽到45歲以上的人數為,求隨機變量
的分布列及數學期望.
參考數據:
,其中
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C:+
=1(a>b>0)的離心率為
,直線l:x+2y=4與橢圓有且只有一個交點T.
(I)求橢圓C的方程和點T的坐標;
(Ⅱ)O為坐標原點,與OT平行的直線l′與橢圓C交于不同的兩點A,B,直線l′與直線l交于點P,試判斷是否為定值,若是請求出定值,若不是請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正三棱柱(底面為正三角形,側棱和底面垂直)的所有棱長都為2,
為
的中點,O為
中點.
(1)求證:平面
.
(2)求平面與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,總存在實數
,使
成立,則稱
為
關于參數
的不動點.
(1)當,
時,求
關于參數
的不動點;
(2)若對任意實數,函數
恒有關于參數
兩個不動點,求
的取值范圍;
(3)當,
時,函數
在
上存在兩個關于參數
的不動點,試求參數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知某射擊運動員每次擊中目標的概率都是,現采用隨機模擬的方法估計該運動員射擊
次至多擊中
次的概率:先由計算器產生
到
之間取整數值的隨機數,指定
、
表示沒有擊中目標,
、
、
、
、
、
、
、
表示擊中目標,因為射擊
次,故以每
個隨機數為一組,代表射擊
次的結果.經隨機模擬產生了如下
組隨機數:
5727 0293 7140 9857 0347 4373 8636 9647 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 6710 4281
據此估計,射擊運動員射擊4次至多擊中3次的概率為( )
A.B.
C.
D.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com