【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD為正方形,△SAD是正三角形,P,Q分別是棱SC,AB的中點,且平面SAD⊥平面ABCD.
(1)求證:PQ∥平面SAD;
(2)求證:SQ⊥AC.
【答案】
(1)證明:取SD中點F,連結AF,PF.
∵P,F分別是棱SC,SD的中點,∴FP∥CD,且 ,
∵在正方形ABCD中,Q是AB的中點,
∴AQ∥CD,且 ,即FP∥AQ且FP=AQ,
∴AQPF為平行四邊形,則PQ∥AF,
∵PQ平面SAD,AF平面SAD,∴PQ∥平面SAD
(2)證明:連結BD,∵ABCD是正方形,∴AC⊥BD,
取AD中點E,連SE,EQ,
∵Q為AB中點,∴EQ∥BD,∴AC⊥EQ.
∵SA=SD,∴SE⊥AD,
∵平面SAD⊥平面ABCD,且交線為AD,∴SE⊥平面ABCD,
又AC平面ABCD,∴AC⊥SE,
∵SE∩EQ=E,SE,EQ平面SEQ,∴AC⊥平面SEQ,
∵SQ平面SEQ,∴SQ⊥AC
【解析】(1)取SD中點F,連結AF,PF.證明PQ∥AF.利用直線與平面平行的判定定理證明PQ∥平面SAD.(2)連結BD,證明SE⊥AD.推出SE⊥平面ABCD,得到SE⊥AC.證明EQ⊥AC,然后證明AC⊥平面SEQ,即可證明結論.
【考點精析】認真審題,首先需要了解直線與平面平行的判定(平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行),還要掌握直線與平面垂直的性質(垂直于同一個平面的兩條直線平行)的相關知識才是答題的關鍵.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=ln(1+x)﹣ . (Ⅰ)若a=2,求f(x)在x=1處的切線方程;
(Ⅱ)若f(x)≥0對x∈(﹣1,+∞)恒成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知O點為坐標原點,且點A(1,0),B(0,1),C(2sinθ,cosθ)
(1)若 ,求tanθ的值;
(2)若 =1,求sinθcosθ的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=sinωx+λcosωx,其圖象的一個對稱中心到最近的一條對稱軸的距離為 ,且在x=
處取得最大值.
(1)求λ的值.
(2)設 在區間
上是增函數,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖是在豎直平面內的一個“通道游戲”.圖中豎直線段和斜線段都表示通道,并且在交點處相遇,若豎直線段有第一條的為第一層,有二條的為第二層,…,依此類推.現有一顆小彈子從第一層的通道里向下運動.若在通道的分叉處,小彈子以相同的概率落入每個通道,記小彈子落入第n層第m個豎直通道(從左至右)的概率為P(n,m).某研究性學習小組經探究發現小彈子落入第n層的第m個通道的次數服從二項分布,請你解決下列問題.
(1)求P(2,1),P(3,2)及P(4,2)的值,并猜想P(n,m)的表達式.(不必證明)
(2)設小彈子落入第6層第m個豎直通道得到分數為ξ,其中ξ= ,試求ξ的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線
的參數方程為
(
為參數),在極坐標系(與直角坐標系
取相同的長度單位,且以原點
為極點,以
軸正半軸為極軸)中,圓
的方程為
.
(1)求圓的直角坐標方程;
(2)設圓與直線
交于點
,若點
的坐標為
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設p:實數x滿足x2﹣4ax+3a2<0,其中a<0,q:實數x滿足x2﹣x﹣6≤0或x2+2x﹣8>0,且非p是非q的必要不充分條件,則實數a的范圍是 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,直線
的傾斜角為
且經過點
,以原點
為極點,以
軸正半軸為極軸,與直角坐標系
取相同的長度單位,建立極坐標系,設曲線
的極坐標方程為
.
(1)若直線與曲線
有公共點,求
的取值范圍;
(2)設為曲線
上任意一點,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在平面直角坐標系中,直線
的參數方程是
(
為參數),以
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
,且直線
與曲線
交于
兩點.
(Ⅰ)求曲線的直角坐標方程及直線
恒過的定點
的坐標;
(Ⅱ)在(Ⅰ)的條件下,若,求直線
的普通方程.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com