【題目】在四面體ABCD中,已知∠ADB=∠BDC=∠CDA=60°,AD=BD=3,CD=2,則四面體ABCD的外界球的半徑為( )
A.
B.2
C.3
D.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,AD⊥平面PDC,AD∥BC,PD⊥PB,AD=1,BC=3,CD=4,PD=2.(13分)
(I)求異面直線AP與BC所成角的余弦值;
(II)求證:PD⊥平面PBC;
(II)求直線AB與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市調研考試后,某校對甲、乙兩個文科班的數學考試成績進行分析,規定:大于或等于120分為優秀,120分以下為非優秀.統計成績后,得到如下的列聯表,且已知在甲、乙兩個文科班全部110人中優秀的人數是30人.
(1)請完成上面的列聯表;
優秀 | 非優秀 | 合計 | |
甲班 | 10 | ||
乙班 | 30 | ||
合計 | 110 |
(2)根據列聯表的數據,若按99.9%的可靠性要求,能否認為“成績與班級有關系”;
參考公式與臨界值表 .
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{e1,e2,e3}是空間的一個基底,且=e1+2e2-e3,
=-3e1+e2+2e3,
=e1+e2-e3,試判斷{
}能否作為空間的一個基底?若能,試以此基底表示向量
=2e1-e2+3e3;若不能,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C經過點A(2,3)、B(4,0),對稱軸為坐標軸,焦點F1、F2在x軸上.
(1)求橢圓C的方程;
(2)求∠F1AF2的角平分線所在的直線l與橢圓C的另一個交點的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別為△ABC內角A,B,C的對邊,且ccosA﹣acosC= b.
(1)其 的值;
(2)若tanA,tanB,tanC成等差數列,求 的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校高一年級開設A,B,C,D,E五門選修課,每位同學須彼此獨立地選三門課程,其中甲同學必選A課程,不選B課程,另從其余課程中隨機任選兩門課程.乙、丙兩名同學從五門課程中隨機任選三門課程.
(1)求甲同學選中C課程且乙同學未選中C課程的概率;
(2)用X表示甲、乙、丙選中C課程的人數之和,求X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x3-
x2+cx+d有極值.
(1)求實數c的取值范圍;
(2)若f(x)在x=2處取得極值,且當x<0時,f(x)<d2+2d恒成立,求實數d的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知各項均為正數的數列{an}滿足:Sn為數列{an}的前n項和,且2,an , Sn成等差數列.
(1)求數列{an}的通項公式;
(2)若cn=nan , 求數列{cn}的前n項和Tn .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com