【題目】已知二次函數f(x)=x2+bx+c有兩個零點1和﹣1.
(1)求f(x)的解析式;
(2)設g(x),試判斷函數g(x)在區間(﹣1,1)上的單調性并用定義證明;
(3)由(2)函數g(x)在區間(﹣1,1)上,若實數t滿足g(t﹣1)﹣g(﹣t)>0,求t的取值范圍.
【答案】(1)f(x)=x2﹣1;(2)見解析;(3)(0,).
【解析】
(1)由題意可得﹣1和1是方程x2+bx+c=0的兩根,運用韋達定理可得b,c,進而得到函數f(x)的解析式;
(2)函數g(x)在區間(﹣1,1)上是減函數.運用單調性的定義,注意取值、作差和變形、定符號以及下結論等;
(3)由題意結合(2)的單調性可得﹣1<t﹣1<﹣t<1,解不等式即可得到所求范圍.
(1)由題意得﹣1和1是方程x2+bx+c=0的兩根,
所以﹣1+1=﹣b,﹣1×1=c,
解得b=0,c=﹣1,
所以f(x)=x2﹣1;
(2)函數g(x)在區間(﹣1,1)上是減函數.
證明如下:設﹣1<x1<x2<1,則g(x1)﹣g(x2),
∵﹣1<x1<x2<1,
∴x2﹣x1>0,x1+1>0,x2+1>0,
可得g(x1)﹣g(x2)>0,即g(x1)>g(x2),
則函數g(x)在區間(﹣1,1)上是減函數;
(3)函數g(x)在區間(﹣1,1)上,
若實數t滿足g(t﹣1)﹣g(﹣t)>0,
即有g(t﹣1)>g(﹣t),
又由(2)函數g(x)在區間(﹣1,1)上是遞減函數,
可得﹣1<t﹣1<﹣t<1,
解得0<t.則實數t的取值范圍為(0,
).
科目:高中數學 來源: 題型:
【題目】下列有關線性回歸分析的四個命題:
①線性回歸直線必過樣本數據的中心點();
②回歸直線就是散點圖中經過樣本數據點最多的那條直線;
③當相關性系數時,兩個變量正相關;
④如果兩個變量的相關性越強,則相關性系數就越接近于
.
其中真命題的個數為( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設袋子中裝有a個紅球,b個黃球,c個藍球,且規定:取出一個紅球得1分,取出一個黃球2分,取出藍球得3分.
(1)當a=3,b=2,c=1時,從該袋子中任。ㄓ蟹呕,且每球取到的機會均等)2個球,記隨機變量ξ為取出此2球所得分數之和.求ξ分布列;
(2)從該袋子中任。ㄇ颐壳蛉〉降臋C會均等)1個球,記隨機變量η為取出此球所得分數.若 ,求a:b:c.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的奇函數,且當x<0時,f(x)=x2+2x.現已畫出函數f(x)在y軸左側的圖象如圖所示,
(1)畫出函數f(x),x∈R剩余部分的圖象,并根據圖象寫出函數f(x),x∈R的單調區間;(只寫答案)
(2)求函數f(x),x∈R的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)是定義在R上的奇函數,且當x<0時,f(x)=x2+2x.現已畫出函數f(x)在y軸左側的圖象如圖所示,
(1)畫出函數f(x),x∈R剩余部分的圖象,并根據圖象寫出函數f(x),x∈R的單調區間;(只寫答案)
(2)求函數f(x),x∈R的解析式.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一個盒中裝有編號分別為的四個形狀大小完全相同的小球.
(1)從盒中任取兩球,求取出的球的編號之和大于的概率.
(2)從盒中任取一球,記下該球的編號,將球放回,再從盒中任取一球,記下該球的編號
,求
的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知冪函數滿足
.
(1)求函數的解析式;
(2)若函數,是否存在實數
使得
的最小值為0?若存在,求出
的值;若不存在,說明理由;
(3)若函數,是否存在實數
,使函數
在
上的值域為
?若存在,求出實數
的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某港口要將一件重要物品用小艇送到一艘正在航行的輪船上.在小艇出發時,輪船位于港口
北偏西
且與該港口相距20海里的
處,并以30海里/時的航行速度沿正東方向勻速行駛,假設該小船沿直線方向以
海里/時的航行速度勻速行駛,經過
小時與輪船相遇.
(1)若希望相遇時小艇的航行距離最小,則小艇航行速度的大小應為多少?
(2)假設小艇的最高航行速度只能達到30海里/時,試設計航行方案(即確定航行方向與航行速度的大。沟眯⊥芤宰疃虝r間與輪船相遇,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com