【題目】已知橢圓過點
,且右焦點為
.
(1)求橢圓的方程;
(2)過點的直線
與橢圓
交于
兩點,交
軸于點
.若
,求證:
為定值;
(3)在(2)的條件下,若點不在橢圓
的內部,點
是點
關于原點
的對稱點,試求三角形
面積的最小值.
科目:高中數學 來源: 題型:
【題目】某公司培訓員工某項技能,培訓有如下兩種方式:
方式一:周一到周五每天培訓1小時,周日測試
方式二:周六一天培訓4小時,周日測試
公司有多個班組,每個班組60人,現任選兩組記為甲組、乙組
先培訓;甲組選方式一,乙組選方式二,并記錄每周培訓后測試達標的人數如表:
第一周 | 第二周 | 第三周 | 第四周 | |
甲組 | 20 | 25 | 10 | 5 |
乙組 | 8 | 16 | 20 | 16 |
用方式一與方式二進行培訓,分別估計員工受訓的平均時間
精確到
,并據此判斷哪種培訓方式效率更高?
在甲乙兩組中,從第三周培訓后達標的員工中采用分層抽樣的方法抽取6人,再從這6人中隨機抽取2人,求這2人中至少有1人來自甲組的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A,B分別為雙曲線 (a>0,b>0)的左、右頂點,雙曲線的實軸長為4
,焦點到漸近線的距離為
.
(1)求雙曲線的方程;
(2)已知直線y=x-2與雙曲線的右支交于M,N兩點,且在雙曲線的右支上存在點D,使
,求t的值及點D的坐標.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在上海高考改革方案中,要求每位高中生必須在物理、化學、生物、政治、歷史、地理6門學科(3門理科,3門文科)中選擇3門學科參加等級考試,小李同學受理想中的大學專業所限,決定至少選擇一門理科學科,那么小李同學的選科方案有________種.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知非零復數,
,
;若
,
,
滿足
,
.
(1)求的值;
(2)若所對應點
在圓
,求
所對應的點的軌跡;
(3)是否存在這樣的直線,
對應點在
上,
對應點也在直線
上?若存在,求出所有這些直線;若不存在,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校的1000名高三學生參加四門學科的選拔考試,每門試卷共有10道題,每題10分,規定:每門錯題成績記為
,錯
題成績記為
,錯
題成績記為
,錯
題成績記為
,在錄取時,
記為90分,
記為80分,
記為60分,
記為50分.
根據模擬成績,每一門都有如下統計表:
答錯 題數 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
頻數 | 10 | 90 | 100 | 150 | 150 | 200 | 100 | 100 | 50 | 49 | 1 |
已知選拔性考試成績與模擬成績基本吻合.
(1)設為高三學生一門學科的得分,求
的分布列和數學期望;
(2)預測考生4門總分為320概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com