【題目】在平面直角坐標系xOy中,已知圓C的方程為,點
.
求過點M且與圓C相切的直線方程;
過點M任作一條直線與圓C交于A,B兩點,圓C與x軸正半軸的交點為P,求證:直線PA與PB的斜率之和為定值.
【答案】(1),或
;(2)見解析
【解析】
(1)顯然直線l的斜率不存在時,與圓相切,直線l的斜率存在時,設切線方程為y+3=k(x﹣2),利用圓心到直線的距離等于半徑,即可求過點P(2,﹣3)且與圓C相切的直線l的方程;
(2)設出AB的方程,代入圓的方程,轉化為根與系數之間的關系,利用設而不求思想結合直線斜率進行整理即可.
當直線l的斜率不存在時,顯然直線
與圓相切,
當直線l的斜率存在時,設切線方程為,
圓心到直線的距離等于半徑,
,解得
,切線方程為:
即過點且與圓C相切的直線l的方程;
,或
.
依題意可得當直線AB的斜率存在且不為0時,設直線AB:
,代入
,
整理得;
設,
,又
,
,
,
直線PA與PB的斜率之和為
,
,
,
,
,
為定值.
科目:高中數學 來源: 題型:
【題目】已知定義在R上的函數,其中a為常數.
(I)若x=1是函數的一個極值點,求a的值
(II)若函數在區間(-1,0)上是增函數,求a的取值范圍
(III)若函數,在x=0處取得最大值,求正數a的取值范圍
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(本小題滿分分)
已知半徑為的圓的圓心在
軸上,圓心的橫坐標是整數,且與直線
相切.
(Ⅰ)求圓的方程.
(Ⅱ)設直線與圓相交于
,
兩點,求實數
的取值范圍.
(Ⅲ)在(Ⅱ)的條件下,是否存在實數,使得點
到
,
兩點的距離相等,若存在,求出實數
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知等差數列和等比數列
滿足
,
,
.
(1)求的通項公式;
(2)求和: .
【答案】(1);(2)
.
【解析】試題分析:(1)根據等差數列的
,
,列出關于首項
、公差
的方程組,解方程組可得
與
的值,從而可得數列
的通項公式;(2)利用已知條件根據題意列出關于首項
,公比
的方程組,解得
、
的值,求出數列
的通項公式,然后利用等比數列求和公式求解即可.
試題解析:(1)設等差數列{an}的公差為d. 因為a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設等比數列的公比為q. 因為b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結束】
18
【題目】已知命題:實數
滿足
,其中
;命題
:方程
表示雙曲線.
(1)若,且
為真,求實數
的取值范圍;
(2)若是
的充分不必要條件,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】定義在上的函數
,如果滿足:對任意
,存在常數
,都有
成立,則稱
是
上的有界函數,其中
稱為函數
的上界,已知函數
.
(Ⅰ)若是奇函數,求
的值.
(Ⅱ)當時,求函數
在
上的值域,判斷函數
在
上是否為有界函數,并說明理由.
(Ⅲ)若函數在
上是以
為上界的函數,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某百貨公司1~6月份的銷售量與利潤的統計數據如表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
銷售量x/萬件 | 10 | 11 | 13 | 12 | 8 | 6 |
利潤y/萬元 | 22 | 25 | 29 | 26 | 16 | 12 |
(1)根據2~5月份的統計數據,求出y關于x的回歸直線方程x+
;
(2)若由回歸直線方程得到的估計數據與剩下的檢驗數據的誤差均不超過2萬元,則認為得到的回歸直線方程是理想的,試問所得回歸直線方程是否理想?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=|x﹣a|,不等式f(x)≤3的解集為[﹣1,5].
(Ⅰ)求實數a的值;
(Ⅱ)若f(x)+f(x+5)≥m對一切實數x恒成立,求實數m的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市為了制定合理的節水方案,對居民用水情況進行了調查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數據按照[0,0.5),[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.
(I)求直方圖中的a值;
(II)設該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數,說明理由。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com