【題目】在四棱錐中,
平面
,
是正三角形,
與
的交點
恰好是
中點,又
,
.
(1)求證:;
(2)設為
的中點,點
在線段
上,若直線
平面
,求
的長;
(3)求二面角的余弦值.
【答案】(1)見解析;(2)1;(3).
【解析】
(1)利用線面垂直的判定定理,證明BD⊥平面PAC,可得BD⊥PC;(2)取DC中點G,連接FG,證明平面EFG∥平面PAD,可得FG∥平面PAD,證明三角形AMF為直角三角形,即可求AF的長;(3)建立空間直角坐標系,求出平面PAC、平面PBC的法向量,利用向量的夾角公式,即可求二面角A﹣PC﹣B的余弦值.
(1)∵是正三角形,
是
中點,
∴,即
.
又∵平面
,∴
.
又,∴
平面
.
∴.
(2)取中點
,連接
,則
平面
,
又直線平面
,EG∩EF=E,所以平面
平面
,所以
∵為
中點,
,∴
.
∵,
,∴
,則三角形AMF為直角三角形,又
,故
(3)分別以,
,
為
軸,
軸,
軸建立如圖的空間直角坐標系,
∴,
,
,
.
為平面
的法向量.
,
.
設平面的一個法向量為
,
則,即
,
令,得
,
,則平面
的一個法向量為
,
設二面角的大小為
,則
.
所以二面角余弦值為
.
科目:高中數學 來源: 題型:
【題目】已知函數,
、
、
,且
都有
,滿足
的實數
有且只有
個,給出下述四個結論:
①滿足題目條件的實數有且只有
個;②滿足題目條件的實數
有且只有
個;
③在
上單調遞增;④
的取值范圍是
.
其中所有正確結論的編號是( )
A.①④B.②③C.①②③D.①③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有如下命題:①函數y=sinx與y=x的圖象恰有三個交點;②函數y=sinx與y=的圖象恰有一個交點;③函數y=sinx與y=x2的圖象恰有兩個交點;④函數y=sinx與y=x3的圖象恰有三個交點,其中真命題的個數為( 。
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】三國時代吳國數學家趙爽所注《周髀算經》中給出了勾股定理的絕妙證明,下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實,圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色其面積稱為朱實,黃實,利朱用2×勾×股+(股-勾)2=4×朱實+黃實=弦實,化簡得勾2+股2=弦2,設勾股中勾股比為,若向弦圖內隨機拋擲1000顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘數大約為( )
A.886B.500C.300D.134
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知圓,圓
,動圓
與圓
外切并與圓
內切,圓心
的軌跡為曲線
.
(1)求的方程;
(2)若直線與曲線
交于
兩點,問是否在
軸上存在一點
,使得當
變動時總有
?若存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“生命重于泰山,疫情就是命令,防控就是責任”.面對疫情,為切實做好防控,落實“停課不停學”,某校高三年級啟動線上公益學習活動,助“戰”高考.為了解學生的學習效果,李華老師在任教的甲、乙兩個班中各隨機抽取20名學生進行一次檢測,根據他們取得的成績(單位:分,滿分100分)繪制了如下莖葉圖,記成績不低于70分者為“成績優良”.
(1)分別估計甲、乙兩個班“成績優良”的概率;
(2)根據莖葉圖判斷哪個班的學習效果更好?并從兩個角度來說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市旅游局為盡快恢復受疫情影響的旅游業,準備在本市的景區推出旅游一卡通(年卡).為了更科學的制定一卡通的有關條例,市旅游局隨機調查了2019年到本市景區旅游的1000個游客的年旅游消費支出(單位:百元),并制成如下頻率分布直方圖:
由頻率分布直方圖,可近似地認為到本市景區旅游的游客,其旅游消費支出服從正態分布,其中
近似為樣本平均數
(同一組數據用該組區間的中點值作代表).
(1) 若2019年到本市景區旅游游客為500萬人,試估計2019年有多少游客在本市的年旅游消費支出不低于1820元;
(2) 現依次抽取個游客,假設每個游客的旅游消費支出相互獨立,記事件
表示“連續3人的旅游消費支出超出
”.若
表示
的概率,
為常數),且
.
(ⅰ)求,
及
,
;
(ⅱ)判斷并證明數列從第三項起的單調性,試用概率統計知識解釋其實際意義.
參考數據:
,
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】平面直角坐標系中,過橢圓
:
右焦點的直線
交
于
,
兩點,且橢圓
的離心率為
.
(1)求橢圓的方程;
(2),
為
上的兩點,若四邊形
的對角線
,求四邊形
面積的最大值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com