【題目】已知數列{an}的前n項和Sn=2an﹣2n+1 , 若不等式2n2﹣n﹣3<(5﹣λ)an對n∈N*恒成立,則整數λ的最大值為( 。
A.3
B.4
C.5
D.6
科目:高中數學 來源: 題型:
【題目】如圖,四邊形中,
,
,
,將四邊形
沿對角線
折成四面
.使平面
平面
,則下列結論正確的是( ).
A. B.
C. 與平面
所成的角為
D. 四面體
的體積為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面
為矩形,平面
平面
,
,
,
,
為
中點.
(Ⅰ)求證: 平面
;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點
,使得
?若存在,求
的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某人上午7時,乘摩托艇以勻速vkm/h(8≤v≤40)從A港出發到距100km的B港去,然后乘汽車以勻速wkm/h(30≤w≤100)自B港向距300km的C市駛去.應該在同一天下午4至9點到達C市. 設乘坐汽車、摩托艇去目的地所需要的時間分別是xh,yh.
(1)作圖表示滿足上述條件的x,y范圍;
(2)如果已知所需的經費p=100+3(5﹣x)+2(8﹣y)(元),那么v,w分別是多少時p最小?此時需花費多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數f(x)=lg(-x-1)的定義域與函數g(x)=lg(x-3)的定義域的并集為集合A,函數t(x)=-a(x≤2)的值域為集合B.
(1)求集合A與B.
(2)若集合A,B滿足A∩B=B,求實數a取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】(題文)已知函數f(x)=ax2+bx+c(a>0,b∈R,c∈R).
(1)若函數f(x)的最小值是f(-1)=0,且c=1, F(x)=求F(2)+F(-2)的值;
(2)若a=1,c=0,且|f(x)|≤1在區間(0,1]上恒成立,試求b的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某農科所對冬季晝夜溫差大小與反季節大豆新品種發芽多少之間的關系進行分析研究,他們分別記錄了月
日至
月
日的每天晝夜溫差與實驗室每天每
顆種子中的發芽數,得到如下數據:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫度x(℃) | 10 | 11 | 13 | 12 | 8 |
發芽數y(顆) | 23 | 25 | 30 | 26 | 16 |
設農科所確定的研究方案是:先從這組數據中選取
組,用剩下的
組數據求線性回歸方程,再對被選取的
組數據進行檢驗.
(1)求選取的組數據恰好是不相鄰
天數據的概率;
(2)若選取的是月
日與
月
日的兩組數據,請根據
月
日與
月
日的數據,求
關于
的線性回歸方程
;
(3)若由線性回歸方程得到的估計數據與所選出的檢驗數據的誤差均不超過顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?
(注:)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于向量a,b,e及實數x,y,x1,x2,,給出下列四個條件:
①且
; ②
③且
唯一; ④
其中能使a與b共線的是 ( )
A.①②
B.②④
C.①③
D.③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知y=f(x)是定義在R上的偶函數,當x0時,f(x)=
.
(1)求當x<0時,f(x)的解析式;
(2)作出函數f(x)的圖象,并指出其單調區間.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com