精英家教網 > 高中數學 > 題目詳情

【題目】選修4 — 4:坐標系與參數方程

在直角坐標系中,直線的參數方程為為參數),以原點為極點, 軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為).

1)分別寫出直線的普通方程與曲線的直角坐標方程;

2)已知點,直線與曲線相交于兩點,若,求的值.

【答案】1, 2

【解析】試題分析:

(1)將直線的參數方程消去參數可得普通方程;先將曲線C的極坐標方程變形,然后將代入可得直角坐標方程.(2)將直線的參數方程代入圓的方程,再根據一元二次方程根與系數的關系并結合參數方程中參數的幾何意義求解

試題解析

1)將為參數)消去參數可得,

∴直線的普通方程為.

,得

代入上式,得,

∴曲線的直角坐標方程為

2)將代入中,

整理得

兩點對應參數分別為,

,

,

,

,

,

,即 ,

解得,符合題意.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】學校藝術節對同一類的,,,四項參賽作品,只評一項一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學對這四項參賽作品預測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“兩項作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】盒子中裝有四張大小形狀均相同的卡片,卡片上分別標有數其中是虛數單位.稱“從盒中隨機抽取一張,記下卡片上的數后并放回”為一次試驗(設每次試驗的結果互不影響).

(1)求事件在一次試驗中,得到的數為虛數”的概率與事件在四次試驗中,

至少有兩次得到虛數” 的概率;

(2)在兩次試驗中,記兩次得到的數分別為,求隨機變量的分布列與數學期望

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】當生物死亡后,它機體內原有的碳14會按確定的規律衰減.按照慣例,人們將每克組織的碳14含量作為一個單位大約每經過5730年,一個單位的碳14衰減為原來的一半,這個時間稱為“半衰期”.當死亡生物組織內的碳14的含量不足死亡前的千分之一時,用一般的放射性探測器就測不到碳14.如果用一般的放射性探測器不能測到碳14,那么死亡生物組織內的碳14至少經過了_____個“半衰期”.(提示:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】函數的最大值為3,其圖象相鄰兩條對稱軸之間的距離為.

(Ⅰ)求函數的解析式和當的單調減區間;

(Ⅱ)的圖象向右平行移動個長度單位,再向下平移1個長度單位,得到的圖象,用“五點法”作出內的大致圖象.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,正方體的棱長為, 分別是的中點,點在棱

上, ).

)三棱錐的體積分別為,當為何值時, 最大?最大值為多少?

)若平面,證明:平面平面.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓的中心在原點,焦點在軸上,短軸長和焦距都等于2, 是橢圓上的一點,且在第一象限內,過且斜率等于的直線與橢圓交于另一點,點關于原點的對稱點為.

)證明:直線的斜率為定值;

)求面積的最大值,并求此時直線的方程.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)試討論函數的極值點情況;

(2)當為何值時,不等式)恒成立?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】研究變量,得到一組樣本數據,進行回歸分析,有以下結論

①殘差平方和越小的模型,擬合的效果越好;

②用相關指數來刻畫回歸效果,越小說明擬合效果越好;

③線性回歸方程對應的直線至少經過其樣本數據點中的一個點;

④若變量之間的相關系數為,則變量之間的負相關很強.

以上正確說法的個數是( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视