【題目】當生物死亡后,它機體內原有的碳14會按確定的規律衰減.按照慣例,人們將每克組織的碳14含量作為一個單位大約每經過5730年,一個單位的碳14衰減為原來的一半,這個時間稱為“半衰期”.當死亡生物組織內的碳14的含量不足死亡前的千分之一時,用一般的放射性探測器就測不到碳14了.如果用一般的放射性探測器不能測到碳14,那么死亡生物組織內的碳14至少經過了_____個“半衰期”.(提示:)
科目:高中數學 來源: 題型:
【題目】王老師的班上有四個體育健將甲、乙、丙、丁,他們都特別擅長短跑,在某次運動會上,他們四人要組成一個米接力隊,王老師要安排他們四個人的出場順序,以下是他們四人的對話:
甲:我不跑第一棒和第二棒;乙:我不跑第一棒和第四棒;
丙:我也不跑第一棒和第四棒;丁:如果乙不跑第二棒,我就不跑第一棒;
王老師聽了他們四人的對話,安排了一種合理的出場順序,滿足了他們的所有要求, 據此我們可以斷定,在王老師安排的出場順序中,跑第三棒的人是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】科學研究證實,二氧化碳等溫空氣體的排放(簡稱碳排放)對全球氣候和生態環境產生了負面影響,環境部門對市每年的碳排放總量規定不能超過
萬噸,否則將采取緊急限排措施.已知
市
年的碳排放總量為
萬噸,通過技術改造和倡導低碳生活等措施,此后每年的碳排放量比上一年的碳排放總量減少
.同時,因經濟發展和人口增加等因素,每年又新增加碳排放量
萬噸
.
(1)求市
年的碳排放總量(用含
的式子表示);
(2)若市永遠不需要采取緊急限排措施,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
在直角坐標系中,過點
的直線
的參數方程為
(
為參數),以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,已知曲線
的極坐標方程為
,記直線
與曲線
分別交于
兩點.
(1)求曲線和
的直角坐標方程;
(2)證明:成等比數列.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在△ABC中,角A,B,C所對的邊分別為a,b,c,且a+b+c=8.
(1)若a=2,b=,求cosC的值;
(2)若sinAcos2+sinB·cos2
=2sinC,且△ABC的面積S=
sinC,求a和b的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某服裝店對過去100天其實體店和網店的銷售量(單位:件)進行了統計,制成頻率分布直方圖如下:
(1)若將上述頻率視為概率,已知該服裝店過去100天的銷售中,實體店和網店銷售量都不低于50件的概率為0.24,求過去100天的銷售中,實體店和網店至少有一邊銷售量不低于50件的天數;
(2)若將上述頻率視為概率,已知該服裝店實體店每天的人工成本為500元,門市成本為1200元,每售出一件利潤為50元,求該門市一天獲利不低于800元的概率;
(3)根據銷售量的頻率分布直方圖,求該服裝店網店銷售量中位數的估計值(精確到0.01).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4 — 4:坐標系與參數方程
在直角坐標系中,直線
的參數方程為
(
為參數),以原點為極點,
軸的正半軸為極軸建立極坐標系,曲線
的極坐標方程為
(
).
(1)分別寫出直線的普通方程與曲線
的直角坐標方程;
(2)已知點,直線
與曲線
相交于
兩點,若
,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司為慶祝成立二十周年,特舉辦《快樂大闖關》競技類有獎活動,該活動共有四關,由兩名男職員與兩名女職員組成四人小組,設男職員闖過一至四關概率依次是,女職員闖過一至四關的概率依次是
(1)求女職員闖過四關的概率;
(2)設表示四人小組闖過四關的人數,求隨機變量
的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com