【題目】已知函數,
.
(1)當時,求函數
的單調區間;
(2)若關于的不等式
在
上有解,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】已知,函數
.
(1)求證:曲線在點
處的切線過定點;
(2)若是
在區間
上的極大值,但不是最大值,求實數
的取值范圍;
(3)求證:對任意給定的正數,總存在
,使得
在
上為單調函數.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于函數,若在定義域內存在實數
,滿足
,則稱
為“局部奇函數”.
為定義在
上的“局部奇函數”;
曲線
與
軸交于不同的兩點;
若為假命題,
為真命題,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為
,
,橢圓上一點
與橢圓右焦點的連線垂直于
軸.
(1)求橢圓的方程;
(2)與拋物線相切于第一象限的直線
,與橢圓
交于
,
兩點,與
軸交于點
,線段
的垂直平分線與
軸交于點
,求直線
斜率的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下面是某市環保局連續30天對空氣質量指數的監測數據:
61 76 70 56 81 91 55 91 75 81
88 67 101 103 57 91 77 86 81 83
82 82 64 79 86 85 75 71 49 45
(Ⅰ)完成下面的頻率分布表;
(Ⅱ)完成下面的頻率分布直方圖,并寫出頻率分布直方圖中的值;
(Ⅲ)在本月空氣質量指數大于等于91的這些天中隨機選取兩天,求這兩天中至少有一天空氣質量指數在區間內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】選修4-4:坐標系與參數方程
已知曲線的參數方程:
(
為參數),曲線
上的點
對應的參數
.以坐標原點
為極點,以
軸正半軸為極軸,建立極坐標系,點
的極坐標是
,直線
過點
,且與曲線
交于不同的兩點
,
.
(1)求曲線的普通方程;
(2)求的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知向量,函數
,若函數
的圖象與
軸的兩個相鄰交點的距離為
.
(1)求函數的單調區間;
(2)若時,
,求
的值.
(3)若,且
有且僅有一個實根,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某校從參加高三模擬考試的學生中隨機抽取60名學生,將其數學成績(均為整數)分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:
求分數在[120,130)內的頻率,并補全這個頻
率分布直方圖;
統計方法中,同一組數據常用該組區間的中點
值作為代表,據此估計本次考試的平均分;
(3)用分層抽樣的方法在分數段為[110,130)的學生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分數段[120,130)內的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com