【題目】已知在極坐標系中曲線C的極坐標方程為.
(1)求曲線C與極軸所在直線圍成圖形的面積;
(2)設曲線C與曲線ρsinθ=1交于A,B,求|AB|.
【答案】(1);(2)2
.
【解析】
(1)直接利用轉換關系,將曲線C的極坐標方程轉化為直角坐標方程,得到曲線C與極軸所在直線圍成的圖形是一個半徑為2的圓周及一個兩直角邊分別為2與2
的直角三角形,即可求得面積.
(2)聯立方程組,分別求出A和B的坐標,再利用兩點間的距離公式求出結果.
(1)因為曲線C的極坐標方程為,
所以當 時,
,
當 時,x
,
所以曲線C與極軸所在直線圍成的圖形是一個半徑為2的圓周及一個兩直角邊分別為2與2
的直角三角形,
如圖所示:
所以.
(2)因為曲線C與曲線ρsinθ=1交于A,B,
由,得A(2,
),轉換為直角坐標為A(
).
極坐標方程ρsinθ=1轉換為直角坐標方程為y=1,
極坐標方程轉換為直角坐標方程為x
,
所以B(),
所以|AB|=.
科目:高中數學 來源: 題型:
【題目】如圖,四邊形ABCD是直角梯形,AB=2CD=2PD=2,PC,且有PD⊥AD,AD⊥CD,AB∥CD.
(1)證明:PD⊥平面ABCD;
(2)若四棱錐P﹣ABCD的體積為,求四棱錐P﹣ABCD的表面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在直角梯形中,
,
,平面
平面
,
,
,
分別在線段
和
上,且
,
是等腰直角三角形.
(1)若,求證:
平面
.
(2),是否存在
,使得
與平面
所成的角的正弦值為
?若存在,求出
的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在全面建成小康社會的決勝階段,讓貧困地區同全國人民共同進入全面小康社會是我們黨的莊嚴承諾.在“脫真貧、真脫貧”的過程中,精準扶貧助推社會公平顯得尤其重要.若某農村地區有200戶貧困戶,經過一年扶貧后,對該地區的“精準扶貧”的成效檢查驗收.從這200戶貧困戶中隨機抽出50戶,對各戶的人均年收入(單位:千元)進行調查得到如下頻數表:
人均年收入 | ||||||
頻數 | 2 | 3 | 10 | 20 | 10 | 5 |
若人均年收入在4000元以下的判定為貧困戶,人均年收入在4000元~8000元的判定為脫貧戶,人均年收入達到8000元的判定為小康戶.
(1)用樣本估計總體,估計該地區還有多少戶沒有脫貧;
(2)為了了解未脫貧的原因,從抽取的50戶中用分層抽樣的方法抽10戶進行調研.
①貧困戶、脫貧戶、小康戶分別抽到的人數是多少?
②從被抽到的脫貧戶和小康戶中各選1人做經驗介紹,求小康戶中人均年收入最高的一戶被選到的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直三棱柱ABC﹣A1B1C1中,平面ABC是下底面.M是BB1上的點,AB=3,BC=4,AC=5,CC1=7,過三點A、M、C1作截面,當截面周長最小時,截面將三棱柱分成的上、下兩部分的體積比為( )
A.B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下圖是2020年2月15日至3月2日武漢市新增新冠肺炎確診病例的折線統計圖.則下列說法不正確的是( )
A.2020年2月19日武漢市新增新冠肺炎確診病例大幅下降至三位數
B.武漢市在新冠肺炎疫情防控中取得了階段性的成果,但防控要求不能降低
C.2020年2月19日至3月2日武漢市新增新冠肺炎確診病例低于400人的有8天
D.2020年2月15日到3月2日武漢市新增新冠肺炎確診病例最多的一天比最少的一天多1549人
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據相關數據統計,2019年底全國已開通基站13萬個,部分省市的政府工作報告將“推進
通信網絡建設”列入2020年的重點工作,今年一月份全國共建基站3萬個.
(1)如果從2月份起,以后的每個月比上一個月多建設2000個,那么,今年底全國共有基站多少萬個.(精確到0.1萬個)
(2)如果計劃今年新建基站60萬個,到2022年底全國至少需要800萬個,并且,今后新建的數量每年比上一年以等比遞增,問2021年和2022年至少各建多少萬個オ能完成計劃?(精確到1萬個)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為了增強學生的環境意識,某中學隨機抽取了50名學生舉行了一次環保知識競賽,本次競賽的成績(得分均為整數,滿分100分)整理,制成下表:
成績 | ||||||
頻數 | 2 | 3 | 14 | 15 | 14 | 4 |
(1)作出被抽查學生成績的頻率分布直方圖;
(2)若從成績在中選一名學生,從成績在
中選出2名學生,共3名學生召開座談會,求
組中學生
和
組中學生
同時被選中的概率?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com