【題目】為了增強學生的環境意識,某中學隨機抽取了50名學生舉行了一次環保知識競賽,本次競賽的成績(得分均為整數,滿分100分)整理,制成下表:
成績 | ||||||
頻數 | 2 | 3 | 14 | 15 | 14 | 4 |
(1)作出被抽查學生成績的頻率分布直方圖;
(2)若從成績在中選一名學生,從成績在
中選出2名學生,共3名學生召開座談會,求
組中學生
和
組中學生
同時被選中的概率?
科目:高中數學 來源: 題型:
【題目】已知在極坐標系中曲線C的極坐標方程為.
(1)求曲線C與極軸所在直線圍成圖形的面積;
(2)設曲線C與曲線ρsinθ=1交于A,B,求|AB|.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知.
(1)討論時,
的單調性、極值;
(2)求證:在(1)的條件下,;
(3)是否存在實數a,使的最小值是3,如果存在,求出a的值;若不存在,
請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在一次比賽中,某隊的六名隊員均獲得獎牌,共獲得4枚金牌2枚銀牌,在頒獎晚會上,這六名隊員與1名領隊排成一排合影,若兩名銀牌獲得者需站在領隊的同側,則不同的排法共有______種.(用數字作答)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知F(0,1)為平面上一點,H為直線l:y=﹣1上任意一點,過點H作直線l的垂線m,設線段FH的中垂線與直線m交于點P,記點P的軌跡為Γ.
(1)求軌跡Γ的方程;
(2)過點F作互相垂直的直線AB與CD,其中直線AB與軌跡Γ交于點AB,直線CD與軌跡Γ交于點CD,設點M,N分別是AB和CD的中點.
①問直線MN是否恒過定點,如果經過定點,求出該定點,否則說明理由;
②求△FMN的面積的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,曲線
的參數方程為
(其中
為參數),以原點
為極點,以
軸非負半軸為極軸建立極坐標系,曲線
的極坐標方程為
.
(Ⅰ)求曲線的普通方程與曲線
的直角坐標方程;
(Ⅱ)設點,
分別是曲線
,
上兩動點且
,求
面積的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱柱中,底面
是等腰梯形,
,頂點
在底面
內的射影恰為點
.
(1)求證:平面
;
(2)若直線與底面
所成的角為
,求平面
與平面
所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,已知圓
:
,點
,
,點
在圓
上,
.
(1)求圓的方程;
(2)直線與圓
交于
,
兩點(
點在
軸上方),點
是拋物線
上的動點,點
為
的外心,求線段
長度的最大值,并求出當線段
長度最大時,
外接圓的標準方程.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】國際上通常用年齡中位數指標作為劃分國家或地區人口年齡構成的標準:年齡中位數在20歲以下為“年輕型”人口;年齡中位數在20~30歲為“成年型”人口;年齡中位數在30歲以上為“老齡型”人口.
如圖反映了我國全面放開二孩政策對我國人口年齡中位數的影響.據此,對我國人口年齡構成的類型做出如下判斷:①建國以來直至2000年為“成年型”人口;②從2010年至2020年為“老齡型”人口;③放開二孩政策之后我國仍為“老齡型”人口.其中正確的是( )
A.②③B.①③C.②D.①②
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com