已知函數.
(1)求的單調區間;
(2)當時,判斷
和
的大小,并說明理由;
(3)求證:當時,關于
的方程:
在區間
上總有兩個不同的解.
科目:高中數學 來源: 題型:解答題
(14分)已知函數,其中a是實數.設A(x1,f(x1)),B(x2,f(x2))為該函數圖象上的兩點,且x1<x2.
(Ⅰ)指出函數f(x)的單調區間;
(Ⅱ)若函數f(x)的圖象在點A,B處的切線互相垂直,且x2<0,證明:x2﹣x1≥1;
(Ⅲ)若函數f(x)的圖象在點A,B處的切線重合,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
設是定義在
的可導函數,且不恒為0,記
.若對定義域內的每一個
,總有
,則稱
為“
階負函數 ”;若對定義域內的每一個
,總有
,則稱
為“
階不減函數”(
為函數
的導函數).
(1)若既是“1階負函數”,又是“1階不減函數”,求實數
的取值范圍;
(2)對任給的“2階不減函數”,如果存在常數
,使得
恒成立,試判斷
是否為“2階負函數”?并說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
甲廠以x 千克/小時的速度運輸生產某種產品(生產條件要求),每小時可獲得利潤是
元.
(1)要使生產該產品2小時獲得的利潤不低于3000元,求x的取值范圍;
(2)要使生產900千克該產品獲得的利潤最大,問:甲廠應該選取何種生產速度?并求最大利潤.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
某租賃公司擁有汽車100輛,當每輛車的月租金為3000元時,可全部租出,當每輛車的月租金每增加50元時,未租出的車將會增加一輛,租出的車每輛每月需維護費150元,未租出的車每輛每月需要維護費50元.
(1)當每輛車的月租金定為3600元時,能租出多少輛車?
(2)當每輛車的月租金定為多少元時,租賃公司的月收益最大?最大月收益是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖所示,要用欄桿圍成一個面積為50平方米的長方形花園,其中有一面靠墻不需要欄桿,其中正面欄桿造價每米200元,兩個側面欄桿每米造價50元,設正面欄桿長度為米.
(1)將總造價y表示為關于的函數;
(2)問花園如何設計,總造價最少?并求最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com