【題目】已知集合A= . (Ⅰ)求A∩B,(RB)∪A;
(Ⅱ)若CA,求實數a的取值范圍.
【答案】解:(Ⅰ)解:由 得,x2﹣5x+6≤2, 即x2﹣5x+4≤0,解得1≤x≤4,則A={x|1≤x≤4}
由 得,
,
由 得(x﹣1)(x﹣3)>0,解得x<1或x>3,
由 得
,則(﹣x﹣1)(x﹣1)<0,
即(x+1)(x﹣1)>0,解得x<﹣1或x>1,
所以B={x|x<﹣1或x>3},RB={x|﹣1≤x≤3},
所以A∩B={x|3<x≤4},(RB)∪A={x|﹣1≤x≤4};
(Ⅱ)解:由CA、C≠得, ,
解得2≤a≤4,
∴實數a的取值范圍是[2,4]
【解析】(Ⅰ)由指數函數的性質、一元二次不等式的解法求出A,由對數函數的性質、分式不等式的解法求出B,由補集的運算求出RB,由交集、并集的運算分別求出A∩B,(RB)∪A;(Ⅱ)根據題意和子集的定義列出不等式,求出實數a的取值范圍.
【考點精析】解答此題的關鍵在于理解交、并、補集的混合運算的相關知識,掌握求集合的并、交、補是集合間的基本運算,運算結果仍然還是集合,區分交集與并集的關鍵是“且”與“或”,在處理有關交集與并集的問題時,常常從這兩個字眼出發去揭示、挖掘題設條件,結合Venn圖或數軸進而用集合語言表達,增強數形結合的思想方法.
科目:高中數學 來源: 題型:
【題目】已知函數 是奇函數,f(x)=lg(10x+1)+bx是偶函數.
(1)求a和b的值.
(2)說明函數g(x)的單調性;若對任意的t∈[0,+∞),不等式g(t2﹣2t)+g(2t2﹣k)>0恒成立,求實數k的取值范圍.
(3)設 ,若存在x∈(﹣∞,1],使不等式g(x)>h[lg(10a+9)]成立,求實數a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,AB切⊙O于點B,直線AO交⊙O于D,E兩點,BC⊥DE,垂足為C.
(1)證明:∠CBD=∠DBA;
(2)若AD=3DC,BC= ,求⊙O的直徑.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示的多面體,它的正視圖為直角三角形,側視圖為正三角形,俯視圖為正方形(尺寸如圖所示),E為VB的中點.
(1)求證:VD∥平面EAC;
(2)求二面角A﹣VB﹣D的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給n個自上而下相連的正方形著黑色或白色.當n≤4時,在所有不同的著色方案中,黑色正方形互不相鄰的著色方案如圖所示,由此推斷,當n=6時,至少有兩個黑色正方形相鄰的著色方案共有( )種.
A.21
B.32
C.43
D.54
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列{an}滿足a1=a,an+1= (n∈N*).
(1)求a2 , a3 , a4;
(2)猜測數列{an}的通項公式,并用數學歸納法證明.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=asinx﹣bcosx(a,b為常數,a≠0,x∈R)在x= 處取得最大值,則函數y=f(x+
)是( )
A.奇函數且它的圖象關于點(π,0)對稱
B.偶函數且它的圖象關于點( ,0)對稱
C.奇函數且它的圖象關于點( ,0)對稱
D.偶函數且它的圖象關于點(π,0)對稱
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于數列,
,
,
,若滿足
,則稱數列
為“
數列”.
若存在一個正整數,若數列
中存在連續的
項和該數列中另一個連續的
項恰好按次序對應相等,則稱數列
是“
階可重復數列”,
例如數列因為
,
,
,
與
,
,
,
按次序對應相等,所以數列
是“
階可重復數列”.
(I)分別判斷下列數列,
,
,
,
,
,
,
,
,
.是否是“
階可重復數列”?如果是,請寫出重復的這
項;
(II)若項數為的數列
一定是 “
階可重復數列”,則
的最小值是多少?說明理由;
(III)假設數列不是“
階可重復數列”,若在其最后一項
后再添加一項
或
,均可 使新數列是“
階可重復數列”,且
,求數列
的最后一項
的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com