【題目】下列說法錯誤的是( )
A.在回歸直線方程中,當解釋變量x每增加1個單位時,預報變量
平均增加
個單位.
B.對分類變量X與Y,隨機變量的觀測值k越大,則判斷“X與Y有關系”的把握程度越小.
C.兩個隨機變量的線性相關性越強,則相關系數的絕對值就越接近于1.
D.回歸直線過樣本點的中心.
科目:高中數學 來源: 題型:
【題目】已知直線l的參數方程為為參數), 橢圓C的參數方程為
為參數)。在平面直角坐標系中,以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,點A的極坐標為(2,
(1)求橢圓C的直角坐標方程和點A在直角坐標系下的坐標
(2)直線l與橢圓C交于P,Q兩點,求△APQ的面積
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市的教育主管部門對所管轄的學校進行年終督導評估,為了解某學校師生對學校教學管理的滿意度,分別從教師和不同年級的同學中隨機抽取若干師生,進行評分(滿分100分),繪制如下頻率分布直方圖(分組區間為,
,
,
,
,
),并將分數從低到高分為四個等級:
滿意度評分 | ||||
滿意度等級 | 不滿意 | 基本滿意 | 滿意 | 非常滿意 |
已知滿意度等級為基本滿意的有340人.
(1)求表中的值及不滿意的人數;
(2)在等級為不滿意的師生中,老師占,現從該等級師生中按分層抽樣抽取12人了解不滿意的原因,并從中抽取3人擔任整改督導員,記
為老師整改督導員的人數,求
的分布列及數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設甲、乙兩位同學上學期間,每天7:30之前到校的概率均為.假定甲、乙兩位同學到校情況互不影響,且任一同學每天到校情況相互獨立.
(Ⅰ)用表示甲同學上學期間的三天中7:30之前到校的天數,求隨機變量
的分布列和數學期望;
(Ⅱ)設為事件“上學期間的三天中,甲同學在7:30之前到校的天數比乙同學在7:30之前到校的天數恰好多2”,求事件
發生的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】有2013支球隊進行氣次年度超級足球循環賽,每兩支球隊均恰比賽場,每場比賽勝者得3分,負者得0分,平局各得1分.比賽結束后,甲把他所在球隊的總分告訴了乙,乙馬上知道了甲所在球隊在整個比賽中的勝負場數.試問:甲所在球隊在這次比賽中所得的總分是多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某歌舞團有名演員,他們編排了一些節目,每個節目都由四名演員同臺表演.在一次演出中,他們發現:能適當安排若干個節目,使團中每兩名演員都恰有一次在這次演出中同臺表演。求
的最小值。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某市環保部門對該市市民進行了一次動物保護知識的網絡問卷調查,每位市民僅有一次參加機會,通過隨機抽樣,得到參'與問卷調查的100人的得分(滿分:100分)數據,統計結果如表所示:
組別 | ||||||
男 | 2 | 3 | 5 | 15 | 18 | 12 |
女 | 0 | 5 | 10 | 15 | 5 | 10 |
若規定問卷得分不低于70分的市民稱為“動物保護關注者”,則山圖中表格可得列聯表如下:
非“動物保護關注者” | 是“動物保護關注者” | 合計 | |
男 | 10 | 45 | 55 |
女 | 15 | 30 | 45 |
合計 | 25 | 75 | 100 |
(1)請判斷能否在犯錯誤的概率不超過0.05的前提下認為“動物保護關注者”與性別有關?
(2)若問卷得分不低于80分的人稱為“動物保護達人”.現在從本次調查的“動物保護達人”中利用分層抽樣的方法隨機抽取6名市民參與環保知識問答,再從這6名市民中抽取2人參與座談會,求抽取的2名市民中,既有男“動物保護達人”又有女“動物保護達人”的概率.
附表及公式:,其中
.
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com