精英家教網 > 高中數學 > 題目詳情

設函數,,記.
(1)求曲線處的切線方程;
(2)求函數的單調區間;
(3)當時,若函數沒有零點,求的取值范圍.

(1)曲線處的切線方程;(2)當時,函數的增區間是,當時,函數的增區間是,減區間是;(3)實數的取值范圍為.

解析試題分析:(1)求曲線處的切線方程,由導數的幾何意義得,對函數求導得,既得函數處的切線的斜率為,又,得切點,由點斜式可得切線方程;(2)求函數的單調區間,由題意得,,求函數的單調區間,先確定函數的定義域為,由于含有對數函數,可對函數求導得,,由于含有參數,需對討論,分,兩種情況,從而得函數的單調區間;(3)當時,若函數沒有零點,即無解,由(2)可知,當時,函數的最大值為,只要小于零即可,由此可得的取值范圍.
試題解析:(1),則函數處的切線的斜率為.又,
所以函數處的切線方程為,即       4分
(2),().
①當時,在區間上單調遞增;
②當時,令,解得;令,解得.
綜上所述,當時,函數的增區間是
時,函數的增區間是,減區間是.       9分
(3)依題意,函數沒有零點,即無解.
由(2)知,當時,函數

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:解答題

已知函數.
(1)若存在,使得,求a的取值范圍;
(2)若有兩個不同的實數解,證明:.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知曲線.
(1)求曲線在點()處的切線方程;
(2)若存在使得,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數.
(1)求函數的極小值;
(2)求函數的遞增區間.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數,且是函數的一個極小值點.
(1)求實數的值;
(2)求在區間上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數處有極大值
(1)求的解析式;
(2)求的單調區間;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數(,為自然對數的底數).
(1)若曲線在點處的切線平行于軸,求的值;
(2)求函數的極值;
(3)當的值時,若直線與曲線沒有公共點,求的最大值.
(注:可能會用到的導數公式:;

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

一個圓柱形圓木的底面半徑為1m,長為10m,將此圓木沿軸所在的平面剖成兩個部分.現要把其中一個部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形(如圖所示,其中O為圓心,在半圓上),設,木梁的體積為V(單位:m3),表面積為S(單位:m2).

(1)求V關于θ的函數表達式;
(2)求的值,使體積V最大;
(3)問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

已知函數
(1)當時,求的單調區間;
(2)若的最大值為,求的值.

查看答案和解析>>
久久精品免费一区二区视