【題目】在正三棱錐S﹣ABC中,AB= ,M是SC的中點,AM⊥SB,則正三棱錐S﹣ABC外接球的球心到平面ABC的距離為 .
【答案】
【解析】解:取AC的中點N,連接BN,因為SA=SC,所以AC⊥SN,由∵△ABC是正三角形,∴AC⊥BN. 故AC⊥平面SBN,AC⊥BC.
又∵AM⊥SB,AC∩AM=A,∴SB⊥平面SAC,SB⊥SA且SB⊥SC
故得到SB,SA,SC是三條兩兩垂直的.可以看成是一個正方體切下來的一個正三棱錐.
故外接圓直徑2R=
∵AB= ,∴SA=1.
那么:外接球的球心與平面ABC的距離為正方體對角線的 ,即d=
.
所以答案是: .
【考點精析】利用棱錐的結構特征對題目進行判斷即可得到答案,需要熟知側面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.
科目:高中數學 來源: 題型:
【題目】為了調查每天人們使用手機的時間,我校某課外興趣小組在天府廣場隨機采訪男性、女性用戶各50 名,其中每天玩手機超過6小時的用戶列為“手機控”,否則稱其為“非手機控”,調查結果如下:
手機控 | 非手機控 | 合計 | |
男性 | 26 | 24 | 50 |
女性 | 30 | 20 | 50 |
合計 | 56 | 44 | 100 |
(1)根據以上數據,能否有60%的把握認為“手機控”與“性別”有關?
(2)現從調查的女性用戶中按分層抽樣的方法選出5人,求所抽取5人中“手機控”和“非手機控”的人數;
(3)從(2)中抽取的5人中再隨機抽取3人,記這3人中“手機控”的人數為X,試求X的分布列與數學期望. 參考公式: .
參考數據:
P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.05 | 0.025 | 0.010 |
k0 | 0.456[ | 0.708 | 1.321 | 3.840 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在正方體中,點
是線段
上的動點,則下列說法錯誤的是( )
A. 無論點在
上怎么移動,異面直線
與
所成角都不可能是
B. 無論點在
上怎么移動,都有
C. 當點移動至
中點時,才有
與
與相交于一點,記為點
,且
D. 當點移動至
中點時,直線
與平面
所成角最大且為
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】據市場調查發現,某種產品在投放市場的30天中,其銷售價格(元)和時間
(天)的關系如圖所示.
(1)求銷售價格(元)和時間
(天)的函數關系式;
(2)若日銷售量(件)與時間
(天)的函數關系式是
,問該產品投放市場第幾天時,日銷售額
(元)最高,且最高為多少元?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】關于函數 有以下四個命題:
①對于任意的,都有
; ②函數
是偶函數;
③若為一個非零有理數,則
對任意
恒成立;
④在圖象上存在三個點
,
,
,使得
為等邊三角形.其中正確命題的序號是__________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=mlnx+(m﹣1)x.
(1)若f(x)存在最大值M,且M>0,求m的取值范圍.
(2)當m=1時,試問方程xf(x)﹣ =﹣
是否有實數根,若有,求出所有實數根;若沒有,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,矩形ABCD中,點A在x軸上,點B的坐標為(1,0).且點C與點D在函數f(x)= 的圖象上.若在矩形ABCD內隨機取一點,則該點取自空白部分的概率等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1,(a>b>0)的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線x﹣y+
=0)且不垂直于x軸直線l橢圓C相交于A、B兩點. (Ⅰ)求橢圓C的方程;
(Ⅱ)求
取值范圍;
(Ⅲ)若B關于x軸的對稱點是E,證明:直線AE與x軸相交于定點.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com