精英家教網 > 高中數學 > 題目詳情

【題目】若函數,

(1)若函數為奇函數,求m的值;

(2)若函數上是增函數,求實數m的取值范圍;

(3)若函數上的最小值為,求實數m的值.

【答案】(1)

(2)

(3)

【解析】

(1)由奇函數得到,代入計算得到答案.

(2)討論,三種情況,分別計算得到答案.

(3)根據(2)的討論,分別計算函數的最小值,對比范圍得到答案.

(1)是奇函數,定義域為

,令,得,

經檢驗:

(2)①時,開口向上,對稱軸為,

上單調遞增

時,開口向下,對稱軸為

上單調遞增,在上單調遞減,

上單調遞增,,

時,

函數上單調遞增,則上單調遞減,

上不單調,不滿足題意.

綜上所述:的取值范圍是

(3)由(2)可知

時,,上單調遞增,

解得

時,,

上單調遞增,在上單調遞減,

時,

解得:(舍)

時,

解得:,

時,

函數上單調遞增,則上單調遞減,

時,

解得:(舍)

綜上所述:

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】某工廠人員及工資構成如下表:

人員

經理

管理人員

高級技工

工人

學徒

合計

周工資/

2200

1250

1220

1200

490

人數

1

6

5

10

1

23

1)指出這個問題中的眾數、中位數、平均數.

2)這個問題中,平均數能客觀地反映該工廠的工資水平嗎?為什么?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體中,四邊形是梯形,,平面,平面⊥平面.

(Ⅰ)求證:平面;

(Ⅱ)若是等邊三角形,,求多面體的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某市兩所高級中學聯合在暑假組織全體教師外出旅游,活動分為兩條線路:華東五市游和長白山之旅,且每位教師至多參加了其中的一條線路.在參加活動的教師中,高一教師占42.5%,高二教師占47.5%,高三教師占10%.參加華東五市游的教師占參加活動總人數的,且該組中,高一教師占50%,高二教師占40%,高三教師占10%.為了了解各條線路不同年級的教師對本次活動的滿意程度,現用分層隨機抽樣的方法從參加活動的全體教師中抽取一個容量為200的樣本.試確定:

1)參加長白山之旅的高一教師、高二教師、高三教師在該組分別所占的比例;

2)參加長白山之旅的高一教師、高二教師、高三教師分別應抽取的人數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】2018年元旦假期,高三的8名同學準備拼車去旅游,其中班、班,班、班每班各兩名,分乘甲乙兩輛汽車,每車限坐4名同學乘同一輛車的4名同學不考慮位置,其中班兩位同學是孿生姐妹,需乘同一輛車,則乘坐甲車的4名同學中恰有2名同學是來自同一個班的乘坐方式共有  

A. 18 B. 24 C. 48 D. 36

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖:直線平面,直線平行四邊形,四棱錐的頂點在平面上, ,,, ,、分別是的中點

(Ⅰ)求證:平面

(Ⅱ)求三棱錐的體積.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某聯歡晚會舉行抽獎活動,舉辦方設置了甲、乙兩種抽獎方案,方案甲的中獎率為,中獎可以獲得2分:方案乙的中獎率為,中獎可以獲得3分;未中獎則不得分.每人有且只有一次抽獎機會,每次抽獎中獎與否互不影響,晚會結束后憑分數兌換獎品.

(1)若小明選擇方案甲抽獎,小紅選擇方案乙抽獎,記他們的累計得分為,求的概率;

(2)若小明、小紅兩人都選擇方案甲或都選擇方案乙進行抽獎,問:他們選擇何種方案抽獎,累計得分的均值較大?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是正方形,平面,分別是線段的中點,.

(1)求證:∥平面;

(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知直線l4x3y100,半徑為2的圓Cl相切,圓心Cx軸上且在直線l的右上方.

(1)求圓C的方程;

(2)過點M(1,0)的直線與圓C交于A,B兩點(Ax軸上方),問在x軸正半軸上是否存在定點N,使得x軸平分∠ANB?若存在,請求出點N的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视