【題目】在平面直角坐標系xOy中,曲線C上的點到點
的距離與它到直線
的距離之比為
,圓O的方程為
,曲線C與x軸的正半軸的交點為A,過原點O且異于坐標軸的直線與曲線C交于B,C兩點,直線AB與圓O的另一交點為P,直線PD與圓O的另一交點為Q,其中
,設直線AB,AC的斜率分別為
;
(1)求曲線C的方程,并證明到點M的距離
;
(2)求的值;
(3)記直線PQ,BC的斜率分別為、
,是否存在常數
,使得
?若存在,求
的值,若不存在,說明理由.
科目:高中數學 來源: 題型:
【題目】設函數x∈R,其中a,b∈R.
(Ⅰ)求f(x)的單調區間;
(Ⅱ)若f(x)存在極值點x0,且f(x1)= f(x0),其中x1≠x0,求證:x1+2x0=3;
(Ⅲ)設a>0,函數g(x)= |f(x)|,求證:g(x)在區間[0,2]上的最大值不小于.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業參加項目生產的工人為
人,平均每人每年創造利潤
萬元.根據現實的需要,從
項目中調出
人參與
項目的售后服務工作,每人每年可以創造利潤
萬元(
),
項目余下的工人每人每年創造利圖需要提高
(1)若要保證項目余下的工人創造的年總利潤不低于原來
名工人創造的年總利潤,則最多調出多少人參加
項目從事售后服務工作?
(2)在(1)的條件下,當從項目調出的人數不能超過總人數的
時,才能使得
項目中留崗工人創造的年總利潤始終不低于調出的工人所創造的年總利潤,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在極坐標系中,已知曲線的方程為
,曲線
的方程為
.以極點
為原點,極軸為
軸正半軸建立直角坐標系
.
(1)求曲線,
的直角坐標方程;
(2)若曲線與
軸相交于點
,與曲線
相交于
,
兩點,求
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如果函數的定義域為
,且存在實常數
,使得對定義域內的任意
,都有
恒成立,那么稱此函數具有“
性質”.
(1)判斷函數是否具有“
性質”,若具有“
性質”,求出所有
的值,若不具有“
性質”,請說明理由;
(2)已知具有“
性質”,且當
時,
,求
在
的最大值;
(3)已知函數既具有“
性質”,又具有“
性質”且當
時,
,若函數
圖象與直線
的公共點有
個,求
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的離心率為
,焦距為
,拋物線
的焦點F是橢圓
的頂點.
(1)求與
的標準方程;
(2)上不同于F的兩點P,Q滿足以PQ為直徑的圓經過F,且直線PQ與
相切,求
的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列,
為其前n項的和,滿足
.
(1)求數列的通項公式;
(2)設數列的前n項和為
,數列
的前n項和為
,求證:當
時
;
(3)若函數的定義域為R,并且
,求證
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖已知橢圓,
是長軸的一個端點,弦
過橢圓的中心
,且
,
.
(Ⅰ)求橢圓的方程:
(Ⅱ)設為橢圓上異于
且不重合的兩點,且
的平分線總是垂直于
軸,是否存在實數
,使得
,若存在,請求出
的最大值,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com