【題目】在直角坐標系xOy中,直線l的方程為x﹣y+4=0,曲線C的參數方程為 .
(1)已知在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,點P的極坐標為 ,判斷點P與直線l的位置關系;
(2)設點Q是曲線C上的一個動點,求它到直線l的距離的最小值.
【答案】
(1)解:∵曲線C的參數方程為 ,
∴曲線C的普通方程是 ,
∵點P的極坐標為 ,
∴點P的普通坐標為(4cos ,4sin
),即(0,4),
把(0,4)代入直線l:x﹣y+4=0,
得0﹣4+4=0,成立,
故點P在直線l上.
(2)解:∵Q在曲線C: 上,(0°≤α<360°)
∴ 到直線l:x﹣y+4=0的距離:
= ,(0°≤α<360°)
∴ .
【解析】(1)由曲線C的參數方程為 ,知曲線C的普通方程是
,由點P的極坐標為
,知點P的普通坐標為(4cos
,4sin
),即(0,4),由此能判斷點P與直線l的位置關系.(2)由Q在曲線C:
上,(0°≤α<360°),知
到直線l:x﹣y+4=0的距離
=
,(0°≤α<360°),由此能求出Q到直線l的距離的最小值.
科目:高中數學 來源: 題型:
【題目】已知a,b,c分別為銳角△ABC三個內角A,B,C的對邊,且(a+b)(sinA﹣sinB)=(c﹣b)sinC (Ⅰ)求∠A的大小;
(Ⅱ)若f(x)= sin
cos
+cos2
,求f(B)的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,三棱錐P﹣ABC中,PB⊥底面ABC,∠BCA=90°,PB=BC=CA=2,E為PC的中點,點F在PA上,且2PF=FA.
(1)求證:BE⊥平面PAC;
(2)求直線AB與平面BEF所成角的正弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于三次函數f(x)=ax3+bx2+cx+d(a≠0),給出定義:設f′(x)是函數y=f(x)的導數,f″是f′(x)的導數,若方程f″(x)=0有實數解x0 , 則稱點(x0 , f(x0))為函數y=f(x)的“拐點”.某同學經過探究發現:任何一個三次函數都有“拐點”;任何一個三次函數都有對稱中心,且“拐點”就是對稱中心.請你根據這一發現,求:函數 對稱中心為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】△ABC的內角A,B,C所對的邊分別為a,b,c.向量 =(a,
b)與
=(cosA,sinB)平行. (Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】現有四個函數:①y=xsinx;②y=xcosx;③y=x|cosx|;④y=x2x的圖象(部分)如圖:
則按照從左到右圖象對應的函數序號安排正確的一組是( )
A.①④③②
B.③④②①
C.④①②③
D.①④②③
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】2017年春晚過后,為了研究演員上春晚次數與受關注度的關系,某網站對其中一位經常上春晚的演員上春晚次數與受關注度進行了統計,得到如下數據:
上春晚次數x(單位:次) | 2 | 4 | 6 | 8 | 10 |
粉絲數量y(單位:萬人) | 10 | 20 | 40 | 80 | 100 |
(1)若該演員的粉絲數量g(x)≤g(1)=0與上春晚次數x滿足線性回歸方程,試求回歸方程 =
x+
,并就此分析,該演員上春晚12次時的粉絲數量;
(2)若用 (i=1,2,3,4,5)表示統計數據時粉絲的“即時均值”(四舍五入,精確到整數),從這5個“即時均值”中任選2數,記所選的2數之和為隨機變量η,求η的分布列與數學期望. 參考公式:
=
,
=
﹣
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知是定義在[-1,1]上的奇函數,且
,若任意的
,當
時,總有
.
(1)判斷函數在[-1,1]上的單調性,并證明你的結論;
(2)解不等式:;
(3)若對所有的
恒成立,其中
(
是常數),求實數
的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com