【題目】某企業批量生產了一種汽車配件,總數為,配件包裝上標有從1到
的連續自然數序號,為對配件總數
進行估計,質檢員隨機抽取了
個配件,序號從小到大依次為
,
,…,
,這
個序號相當于從區間
上隨機抽取了
個整數,這
個整數將區間
分為
個小區間
,
,…,
.由于這
個整數是隨機抽取的,所以前
個區間的平均長度
與所有
個區間的平均長度
近似相等,進而可以得到
的估計值.已知
,質檢員隨機抽取的配件序號從小到大依次為83,135,274,…,3104.
(1)用上面的方法求的估計值.
(2)將(1)中的估計值作為這批汽車配件的總數,從中隨機抽取100個配件測量其內徑
(單位:
),繪制出頻率分布直方圖如下:
將這100個配件的內徑落入各組的頻率視為這個配件內徑分布的概率,已知標準配件的內徑為200
,把這
個配件中內徑長度最接近標準配件內徑長度的800個配件定義為優等品,求優等品配件內徑
的取值范圍(結果保留整數).
科目:高中數學 來源: 題型:
【題目】某央企在一個社區隨機采訪男性和女性用戶各50名,統計他(她)們一天()使用手機的時間,其中每天使用手機超過6小時(含6小時)的用戶稱為“手機迷”,否則稱其為“非手機迷”,調查結果如下:
男性用戶的頻數分布表
男性用戶日用時間分組( | |||||
頻數 | 20 | 12 | 8 | 6 | 4 |
女性用戶的頻數分布表
女性用戶日用時間分組( | |||||
頻數 | 25 | 10 | 6 | 8 | 1 |
(1)分別估計男性用戶,女性用戶“手機迷”的頻率;
(2)求男性用戶每天使用手機所花時間的中位數;
(3)求女性用戶每天使用手機所花時間的平均數與標準差(同一組中的數據用該組區間的中點值作代表).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】廣元市某校高三數學備課組為了更好地制定二輪復習的計劃,開展了試卷講評后效果的調研,從上學期市一診考試數學試題中選出一些學生易錯題,重新進行測試,并認為做這些題不出任何錯誤的同學為“過關”,出了錯誤的同學為“不過關”,現隨機抽查了年級人,他們的測試成績的頻數分布如下表:
市一診分數段 | |||||
人數 | 5 | 10 | 15 | 13 | 7 |
“過關”人數 | 1 | 3 | 8 | 8 | 6 |
(1)由以上統計數據完成如下列聯表,并判斷是否有
的把握認為市一診數學成績不低于
分與測試“過關”有關?說明你的理由;
分數低于 | 分數不低于 | 合計 | |
“過關”人數 | |||
“不過關”人數 | |||
合計 |
(2)根據以上數據估計該校市一診考試數學成績的中位數.下面的臨界值表供參考:
0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在直角坐標系.xOy中,曲線C1的參數方程為(
為參數),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4sinθ.
(1)求曲線C1的普通方程和C2的直角坐標方程;
(2)已知曲線C2的極坐標方程為,點A是曲線C3與C1的交點,點B是曲線C3與C2的交點,且A,B均異于原點O,且|AB|=4
,求α的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的左右焦點分別為
,
,離心率是
,P為橢圓上的動點.當
取最大值時,
的面積是
(1)求橢圓的方程:
(2)若動直線l與橢圓E交于A,B兩點,且恒有,是否存在一個以原點O為圓心的定圓C,使得動直線l始終與定圓C相切?若存在,求圓C的方程,若不存在,請說明理由
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】從某工廠的一個車間抽取某種產品50件,產品尺寸(單位:cm)落在各個小組的頻數分布如下表:
數據分組 | [12.5,15.5) | [15.5,18.5) | [18.5,21.5) | [21.5,24.5) | [24.5,27.5) | [27.5,30.5) | [30.5,33.5) |
頻數 | 3 | 8 | 9 | 12 | 10 | 5 | 3 |
(1)根據頻數分布表,求該產品尺寸落在[27.5,33.5]內的概率;
(2)求這50件產品尺寸的樣本平均數(同一組中的數據用該組區間的中點值作代表);
(3)根據頻數分布對應的直方圖,可以認為這種產品尺寸服從正態分布
,其中
近似為樣本平均值
,
近似為樣本方差
,經計算得
.利用該正態分布,求
(
).
附:(1)若隨機變量服從正態分布
,則
;(2)
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某商場為吸引顧客消費推出一項優惠活動.活動規則如下:消費額每滿100元可轉動如圖所示的轉盤一次,并獲得相應金額的返券,假定指針等可能地停在任一位置.若指針停在A區域返券60元;停在B區域返券30元;停在C區域不返券.例如:消費218元,可轉動轉盤2次,所獲得的返券金額是兩次金額之和.
(1)若某位顧客消費128元,求返券金額不低于30元的概率;
(2)若某位顧客恰好消費280元,并按規則參與了活動,他獲得返券的金額記為(元).求隨機變量
的分布列和數學期望.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com