【題目】在直角坐標系.xOy中,曲線C1的參數方程為(
為參數),以原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=4sinθ.
(1)求曲線C1的普通方程和C2的直角坐標方程;
(2)已知曲線C2的極坐標方程為,點A是曲線C3與C1的交點,點B是曲線C3與C2的交點,且A,B均異于原點O,且|AB|=4
,求α的值.
科目:高中數學 來源: 題型:
【題目】已知正方體的棱長為2,點
分別是棱
的中點,則二面角
的余弦值為_________;若動點
在正方形
(包括邊界)內運動,且
平面
,則線段
的長度范圍是_________.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】函數對任意的
都有
,且
時
的最大值為
,下列四個結論:①
是
的一個極值點;②若
為奇函數,則
的最小正周期
;③若
為偶函數,則
在
上單調遞增;④
的取值范圍是
.其中一定正確的結論編號是( )
A.①②B.①③C.①②④D.②③④
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】圖1是由邊長為4的正六邊形,矩形
,組成的一個平面圖形,將其沿
,
折起得幾何體
,使得
,且平面
平面
,如圖2.
(1)證明:圖2中,平面平面
;
(2)設點M為圖2中線段上一點,且
,若直線
平面
,求圖2中的直線
與平面
所成角的正弦值
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】過拋物線C:x2=4y的準線上任意一點P作拋物線的切線PA,PB,切點分別為A,B,則A點到準線的距離與B點到準線的距離之和的最小值是( )
A.7B.6C.5D.4
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業批量生產了一種汽車配件,總數為,配件包裝上標有從1到
的連續自然數序號,為對配件總數
進行估計,質檢員隨機抽取了
個配件,序號從小到大依次為
,
,…,
,這
個序號相當于從區間
上隨機抽取了
個整數,這
個整數將區間
分為
個小區間
,
,…,
.由于這
個整數是隨機抽取的,所以前
個區間的平均長度
與所有
個區間的平均長度
近似相等,進而可以得到
的估計值.已知
,質檢員隨機抽取的配件序號從小到大依次為83,135,274,…,3104.
(1)用上面的方法求的估計值.
(2)將(1)中的估計值作為這批汽車配件的總數,從中隨機抽取100個配件測量其內徑
(單位:
),繪制出頻率分布直方圖如下:
將這100個配件的內徑落入各組的頻率視為這個配件內徑分布的概率,已知標準配件的內徑為200
,把這
個配件中內徑長度最接近標準配件內徑長度的800個配件定義為優等品,求優等品配件內徑
的取值范圍(結果保留整數).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某企業為確定下一年投入某種產品的研發費用,需了解年研發費用(單位:千萬元)對年銷售量
(單位:千萬件)的影響,統計了近
年投入的年研發費用
與年銷售量
的數據,得到散點圖如圖所示.
(1)利用散點圖判斷和
(其中
均為大于
的常數)哪一個更適合作為年銷售量
和年研發費用
的回歸方程類型(只要給出判斷即可,不必說明理由)
(2)對數據作出如下處理,令,得到相關統計量的值如下表:根據第(1)問的判斷結果及表中數據,求
關于
的回歸方程;
| |||
15 | 15 | 28.25 | 56.5 |
(3)已知企業年利潤(單位:千萬元)與
的關系為
(其中
),根據第(2)問的結果判斷,要使得該企業下一年的年利潤最大,預計下一年應投入多少研發費用?
附:對于一組數據,其回歸直線
的斜率和截距的最小二乘估計分別為
,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知為等差數列,各項為正的等比數列
的前
項和為
,
,
,__________.在①
;②
;③
這三個條件中任選其中一個,補充在橫線上,并完成下面問題的解答(如果選擇多個條件解答,則以選擇第一個解答記分).
(1)求數列和
的通項公式;
(2)求數列的前
項和
.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com