精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓,若此橢圓上存在不同的兩點A,B關于直線y=4x+m對稱,則實數m的取值范圍是(  )

A. B.

C. D.

【答案】B

【解析】

設橢圓上兩點A(x1,y1)、B(x2,y2)關于直線y=4x+m對稱,AB中點為M(x0,y0),利用平方差法與直線y=4x+m可求得x0=-m,y0=-3m,點M(x0,y0)在橢圓內部,將其坐標代入橢圓方程即可求得m的取值范圍.

橢圓,即:3x2+4y2-12=0,
設橢圓上兩點A(x1,y1)、B(x2,y2)關于直線y=4x+m對稱,AB中點為M(x0,y0),
則 3x12+4y12-12=0,①
3x22+4y22-12=0 ②
①-②得:3(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,

即 32x0(x1-x2)+42y0(y1-y2)=0,

∴y0=3x0,代入直線方程y=4x+m得x0=-m,y0=-3m;
因為(x0,y0)在橢圓內部,
∴3m2+4(-3m)2<12,即3m2+36m2<12,解得
故選:B.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,四棱錐的底面為平行四邊形,,.

1)求證:;

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在四棱錐A-BCDE中,平面BCDE,底面BCDE為直角梯形,,,FAC上一點,且.

1)求證:平面ADE;

2)求異面直線ABDE所成角的余弦值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

(1)討論的單調性;

(2)若存在實數,使得,求正實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數.

1)當a=1時,求函數的單調區間;

2)若上恒成立,求實數a的取值范圍;

3)是否存在實數a,使函數的最小值是3?若存在,求出a的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某“雙一流”大學專業獎學金是以所學專業各科考試成績作為評選依據,分為專業一等獎學金(獎金額元)、專業二等獎學金(獎金額元)及專業三等獎學金(獎金額元),且專業獎學金每個學生一年最多只能獲得一次.圖(1)是統計了該校名學生周課外平均學習時間頻率分布直方圖,圖(2)是這名學生在年周課外平均學習時間段獲得專業獎學金的頻率柱狀圖.

(Ⅰ)求這名學生中獲得專業三等獎學金的人數;

(Ⅱ)若周課外平均學習時間超過小時稱為“努力型”學生,否則稱為“非努力型”學生,列聯表并判斷是否有的把握認為該校學生獲得專業一、二等獎學金與是否是“努力型”學生有關?

(Ⅲ)若以頻率作為概率,從該校任選一名學生,記該學生年獲得的專業獎學金額為隨機變量,求隨機變量的分布列和期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在三棱柱中,E,F分別為線段 的中點.

1)求證:;

2)求證:;

3)在線段上是否存在一點G,使平面平面,證明你的結論.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某學校高三年級有學生500人,其中男生300人,女生200人,為了研究學生的數學成績是否與性別有關,現采用分層抽樣的方法,從中抽取了100名學生,先統計了他們期中考試的數學分數,然后按性別分為男、女兩組,再將兩組學生的分數分成5組:[100,110),[110,120)[120,130),[130,140),[140150]分別加以統計,得到如圖所示的頻率分布直方圖.

1)從樣本中分數小于110分的學生中隨機抽取2人,求兩人恰好為一男一女的概率;

2)若規定分數不小于130分的學生為數學尖子生,請你根據已知條件完成2×2列聯表,并判斷是否有90%的把握認為數學尖子生與性別有關?

附:

P(K2≥k0)

0.100

0.050

0.010

0.001

k0

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】三國時代吳國數學家趙爽所注《周髀算經》中給出了勾股定理的絕妙證明.下面是趙爽的弦圖及注文,弦圖是一個以勾股形之弦為邊的正方形,其面積稱為弦實.圖中包含四個全等的勾股形及一個小正方形,分別涂成紅(朱)色及黃色,其面積稱為朱實、黃實,利用,化簡,得.設勾股形中勾股比為,若向弦圖內隨機拋擲顆圖釘(大小忽略不計),則落在黃色圖形內的圖釘數大約為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视