【題目】給出下列說法:
①若直線平行于平面
內的無數條直線,則
;
②若直線在平面
外,則
;
③若直線,直線
平面
,則
;
④若直線,直線
平面
,則直線
平行于平面
內的無數條直線.
其中正確說法的個數為( )
A.1B.2C.3D.4
【答案】A
【解析】
若直線與平面
內的無數條直線平行,但
可能在平面
內,所以
不一定平行于
;
若直線在平面
外,包括兩種情況:
和
與
相交,所以
和
不一定平行;
若直線,
,只能說明
和
無公共點,但
可能在平面
內,所以
不一定平行于平面
;
若,
,所以
或
,所以
與平面
內的無數條直線平行.
即得解.
對于①,雖然直線與平面
內的無數條直線平行,但
可能在平面
內,所以
不一定平行于
,所以錯誤;
對于②,因為直線在平面
外,包括兩種情況:
和
與
相交,所以
和
不一定平行,所以錯誤;
對于③,因為直線,
,只能說明
和
無公共點,但
可能在平面
內,所以
不一定平行于平面
,所以錯誤;
對于④,因為,
,所以
或
,所以
與平面
內的無數條直線平行,所以正確.
綜上,正確說法的個數為1.
故選:A
科目:高中數學 來源: 題型:
【題目】如圖,圓形紙片的圓心為O,半徑為5 cm,該紙片上的等邊三角形ABC的中心為O。D、E、F為圓O上的點,△DBC,△ECA,△FAB分別是以BC,CA,AB為底邊的等腰三角形。沿虛線剪開后,分別以BC,CA,AB為折痕折起△DBC,△ECA,△FAB,使得D、E、F重合,得到三棱錐。當△ABC的邊長變化時,所得三棱錐體積(單位:cm3)的最大值為_______。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某課題小組共10人,已知該小組外出參加交流活動次數為1,2,3的人數分別為3,3, 4,現從這10人中隨機選出2人作為該組代表參加座談會.
(1)記“選出2人外出參加交流活動次數之和為4”為事件A,求事件A發生的概率;
(2)設X為選出2人參加交流活動次數之差的絕對值,求隨機變量X的分布列和數學期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設A,B,C,D為平面內的四點,且A(1,3),B(2,–2),C(4,1).
(1)若,求D點的坐標;
(2)設向量,
,若k
–
與
+3
平行,求實數
的值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】要測量底部不能到達的電視塔AB的高度,在C點測得塔頂A的仰角是45°,在D點測得塔頂A的仰角是30°,并測得水平面上的∠BCD=120°,CD="40" m,則電視塔的高度為多少?
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在
軸,離心率為
,且長軸長是短軸長的
倍.
(1)求橢圓的標準方程;
(2)設過橢圓
左焦點
的直線
交
于
,
兩點,若對滿足條件的任意直線
,不等式
恒成立,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓的右焦點F與拋物線
焦點重合,且橢圓的離心率為
,過
軸正半軸一點
且斜率為
的直線
交橢圓于
兩點.
(1)求橢圓的標準方程;
(2)是否存在實數使以線段
為直徑的圓經過點
,若存在,求出實數
的值;若不存在說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f1(x),y=f2(x),定義函數f(x).
(1)設函數f1(x)=x+3,f2(x)=x2﹣x,求函數y=f(x)的解析式;
(2)在(1)的條件下,g(x)=mx+2(m∈R),函數h(x)=f(x)﹣g(x)有三個不同的零點,求實數m的取值范圍;
(3)設函數f1(x)=x2﹣2,f2(x)=|x﹣a|,函數F(x)=f1(x)+f2(x),求函數F(x)的最小值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com