【題目】設函數
(1)討論函數的單調性;
(2)當函數有最大值且最大值大于
時,求
的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,AC⊥AD.底面ABCD為梯形,AB∥DC,AB⊥BC,PA=AB=BC=3,點E在棱PB上,且PE=2EB. (Ⅰ)求證:平面PAB⊥平面PCB;
(Ⅱ)求證:PD∥平面EAC;
(Ⅲ)求平面AEC和平面PBC所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知橢圓C: =1(a>b>0)的離心率為
,且過定點M(1,
).
(1)求橢圓C的方程;
(2)已知直線l:y=kx﹣ (k∈R)與橢圓C交于A、B兩點,試問在y軸上是否存在定點P,使得以弦AB為直徑的圓恒過P點?若存在,求出P點的坐標和△PAB的面積的最大值,若不存在,說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某村莊擬修建一個無蓋的圓柱形蓄水池(不計厚度).設該蓄水池的底面半徑為r米,高為h米,體積為V立方米.假設建造成本僅與表面積有關,側面的建造成本為100元/平方米,底面的建造成本為160元/平方米,該蓄水池的總建造成本為12 000π元(π為圓周率).
(1)將V表示成r的函數V(r),并求該函數的定義域;
(2)討論函數V(r)的單調性,并確定r和h為何值時該蓄水池的體積最大.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】給出下列說法,正確的有__________.
①與共線單位向量的坐標是
;
②集合與集合
是相等集合;
③函數的圖象與
的圖象恰有3個公共點;
④函數的圖象是由函數
的圖象水平向右平移一個單位后,將所得圖象在
軸右側部分沿
軸翻折到
軸左側替代
軸左側部分圖象,并保留右側部分而得到.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】下列命題中,正確的命題是
A. 任意三點確定一個平面
B. 三條平行直線最多確定一個平面
C. 不同的兩條直線均垂直于同一個平面,則這兩條直線平行
D. 一個平面中的兩條直線與另一個平面都平行,則這兩個平面平行
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】對于兩條平行直線和圓的位置關系定義如下:若兩直線中至少有一條與圓相切,則稱該位置關系為“平行相切”;若兩直線都與圓相離,則稱該位置關系為“平行相離”;否則稱為“平行相交”.已知直線l1:ax+3y+6=0,l2:2x+(a+1)y+6=0與圓C:x2+y2+2x=b2-1(b>0)的位置關系是“平行相交”,則實數b的取值范圍為 ( )
A. (,
) B. (0,
)
C. (0, ) D. (
,
)∪(
,+∞)
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,當點
在
的圖像上移動時,點
在函數
的圖像上移動,
(1)若點的坐標為
,點
也在
圖像上,求
的值。
(2)求函數的解析式。
(3)當,令
,求
在
上的最值。
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com