精英家教網 > 高中數學 > 題目詳情
已知各項為正數的數列中,,對任意的,成等比數列,公比為成等差數列,公差為,且
(1)求的值;
(2)設,證明:數列為等差數列;
(3)求數列的前項和
(1)2;(2);(3)時,時,.

試題分析:(1)求數列的,相對較容易,由題意可得成等比數列,而,可求得;(2)要證明是等差數列,實質上就是求,求出的遞推關系,從而推導出的遞推關系,由題意,,而,這樣就有,于是關于的遞推關系就有了:,把它變形或用代入就可得到結論;(3)由(2)我們求出了,下面為了求,我們要把數列從前到后建立一個關系,分析已知,發現,這樣就由而求出,于是,得到數列的通項公式后,其前項和也就可求得了.
試題解析:(1)由題意得
,.       2分
,∴.                4分
(2)∵成公比為的等比數列,
成公比為的等比數列
,
又∵成等差數列,
.
,       6分

,,即.
∴數列數列為公差等差數列,   10分
(3)由(1)數列的前幾項為,,
由(2).
,
,
.      16分
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

已知等差數列{}的公差,,且,成等比數列.
(1)求數列{}的公差及通項;
(2)求數列的前項和.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知等差數列{}的首項為a.設數列的前n項和為Sn,且對任意正整數n都有
(1)求數列{}的通項公式及Sn
(2)是否存在正整數n和k,使得成等比數列?若存在,求出n和k的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

數列滿足.
(1)求的表達式;
(2)令,求.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知首項為正數的等差數列中,.則當取最大值時,數列的公差
        .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知表示數列的前項的和,若對任意滿足
=(    )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知數列滿足,,則
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知兩個等差數列的前項和分別為,且,則使得為正偶數時,的值是(   )
A.1B.2C.5D.3或11

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知數列是等比數列,數列是等差數列,則的值為     .

查看答案和解析>>

同步練習冊答案
久久精品免费一区二区视