【題目】已知函數,且定義域為
.
(1)求關于的方程
在
上的解;
(2)若在區間
上單調減函數,求實數
的取值范圍;
(3)若關于的方程
在
上有兩個不同的實根,求實數
的取值范圍.
科目:高中數學 來源: 題型:
【題目】如圖所示,正方體的棱長為1,線段
上有兩個動點
,則下列結論中正確結論的序號是__________.
①;
②直線與平面
所成角的正弦值為定值
;
③當為定值,則三棱錐
的體積為定值;
④異面直線所成的角的余弦值為定值
.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】若學生一天學習數學超過兩個小時的概率為
(每天是相互獨立沒有影響的),一周內至少有四天每天學習數學超過兩個小時,就說該生本周數學學習是投入的.
(Ⅰ)①設學生本周一天學習數學超過兩個小時的天數為
求
的分布列與數學期望
②求學生本周數學學習投入的概率.
(Ⅱ)為了研究學生學習數學的投入程度和本周數學周練成績的關系,隨機在年級中抽取了名學生進行調查,所得數據如下表所示:
成績理想 | 成績不太理想 | 合計 | |
數學學習投入 | 20 | 10 | 30 |
數學學習不太投入 | 10 | 15 | 25 |
合計 | 30 | 25 | 55 |
根據上述數據能否有的把握認為“學生學習數學的投入程度和本周數學成績兩事件有關”?
附:
10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度x(單位:輛/千米)的函數,當橋上的車流密度達到200輛/千米時,造成堵塞,此時車流速度為0;當車流密度不超過20輛/千米時,車流速度為60千米/小時,研究表明:當20≤x≤200時,車流速度v是車流密度x的一次函數.
(1)當0≤x≤200時,求函數v(x)的表達式;
(2)當車流密度x為多大時,車流量(單位時間內通過橋上某觀測點的車輛數,單位:輛/小時)f(x)=xv(x)可以達到最大,并求出最大值.(精確到1輛/小時).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,已知四棱錐P﹣ABCD的底面ABCD為菱形,且∠ABC=60°,
AB=PC=2,PA=PB= .
(1)求證:平面PAB⊥平面ABCD;
(2)設H是PB上的動點,求CH與平面PAB所成最大角的正切值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某高校進行社會實踐,對歲的人群隨機抽取1000人進行了一次是否開通“微博”的調查,開通“微博”的為“時尚族”,否則稱為“非時尚族”.通過調查得到各年齡段人數的頻率分布直方圖如圖所示,其中在
歲、
歲年齡段人數中,“時尚族”人數分別占本組人數的80%、60%.
請完成以下問題:
(1)求歲與
歲年齡段“時尚族”的人數;
(2)從歲和
歲年齡段的“時尚族”中,采用分層抽樣法抽取6人參加網絡時尚達人大賽,其中兩人作為領隊,求領隊的兩人年齡都在
歲內的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=.
(1)判斷函數f(x)的奇偶性;
(2)判斷并用定義證明函數f(x)在其定義域上的單調性.
(3)若對任意的t1,不等式f(
)+f(
)<0恒成立,求k的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=ex﹣lnx.
(參考數據:e≈2.718,ln2≈0.693,ln3≈1.099,ln5≈1.609,ln7≈1.946)
(1)求證:函數f(x)有且只有一個極值點x0;
(2)求函數f(x)的極值點x0的近似值x′,使得|x′﹣x0|<0.1;
(3)求證:f(x)>2.3對x∈(0,+∞)恒成立.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com