【題目】若學生一天學習數學超過兩個小時的概率為
(每天是相互獨立沒有影響的),一周內至少有四天每天學習數學超過兩個小時,就說該生本周數學學習是投入的.
(Ⅰ)①設學生本周一天學習數學超過兩個小時的天數為
求
的分布列與數學期望
②求學生本周數學學習投入的概率.
(Ⅱ)為了研究學生學習數學的投入程度和本周數學周練成績的關系,隨機在年級中抽取了名學生進行調查,所得數據如下表所示:
成績理想 | 成績不太理想 | 合計 | |
數學學習投入 | 20 | 10 | 30 |
數學學習不太投入 | 10 | 15 | 25 |
合計 | 30 | 25 | 55 |
根據上述數據能否有的把握認為“學生學習數學的投入程度和本周數學成績兩事件有關”?
附:
10.828 |
科目:高中數學 來源: 題型:
【題目】已知橢圓的焦點坐標為,且短軸一頂點
滿足
.
(1)求橢圓的方程;
(2)過的直線
與橢圓交于不同的兩點
,則
的內切圓的面積是否存在最大值?若存在,求出這個最大值及此時的直線方程;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,正四面體ABCD的頂點C在平面α內,且直線BC與平面α所成角為15°,頂點B在平面α上的射影為點O,當頂點A與點O的距離最大時,直線CD與平面α所成角的正弦值為 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數f(x)=x2﹣ax+a+3,g(x)=ax﹣2a.
(1)若函數h(x)=f(x)﹣g(x)在[﹣2,0]上有兩個零點,求實數a的取值范圍;
(2)若存在x0∈R,使得f(x0)≤0與g(x0)≤0同時成立,求實數a的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,且定義域為
.
(1)求關于的方程
在
上的解;
(2)若在區間
上單調減函數,求實數
的取值范圍;
(3)若關于的方程
在
上有兩個不同的實根,求實數
的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lg,
(1)求f(x)的定義域并判斷它的奇偶性.
(2)判斷f(x)的單調性并用定義證明.
(3)解關于x的不等式f(x)+f(2x2﹣1)<0.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com