【題目】定義在[﹣1,1]上的奇函數f(x)滿足當﹣1≤x<0時,f(x)=.
(1)求f(x)在[﹣1,1]上的解析式;
(2)當x∈(0,1]時,函數g(x)=﹣m有零點,試求實數m的取值范圍.
【答案】(1);(2)(1,13].
【解析】
試題(1)可知f(0)=0,再設0<x≤1,則﹣1≤﹣x<0,從而得到f(x)=﹣f(﹣x)=﹣(﹣ )=
,從而解得;(2)可化為m=4x+1﹣2x=(2x﹣
)2+
,從而求實數m的取值范圍.
試題解析:
(1)∵f(x)在[﹣1,1]上的奇函數, ∴f(0)=0,
設0<x≤1,則﹣1≤﹣x<0,
故f(x)=﹣f(﹣x)=﹣(﹣ )=
,
故;
(2)當x∈(0,1]時,函數g(x)= ﹣m=4x+1﹣2x﹣m,
故m=4x+1﹣2x=(2x﹣ )2+
,
∵x∈(0,1],∴2x∈(1,2],
∴1<4x+1﹣2x≤13,
故實數m的取值范圍為(1,13]
科目:高中數學 來源: 題型:
【題目】(1)若關于x的不等式ax2﹣3x+2>0(a∈R)的解集為{x|x<1或x>b},求a,b的值;
(2)解關于x的不等式ax2﹣3x+2>5﹣ax(a∈R).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,四邊形中(圖1),
是
的中點,
,
,
將(圖1)沿直線
折起,使二面角
為
(如圖2).
圖1 圖2
(1)求證:平面
;
(2)求異面直線與
所成角的余弦值;
(3)求點到平面
的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在平面直角坐標系中,直線
的參數方程為:
(
為參數,
),以
為極點,
軸的正半軸為極軸,建立極坐標系,曲線
的極坐標方程為
.
(1)當時,寫出直線
的普通方程和曲線
的直角坐標方程;
(2)若點,設曲線
與直線
交于點
,求
的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】將一顆骰子先后拋擲2次,觀察向上的點數,求:
(1)兩數中至少有一個奇數的概率;
(2)以第一次向上的點數為橫坐標x,第二次向上的點數為縱坐標y的點(x,y)在圓x2+y2=15的外部或圓上的概率.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知曲線C1的參數方程為 (t為參數).以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,曲線C2的極坐標方程為ρ=2cosθ.
(1)把C1的參數方程化為極坐標方程;
(2)求C1與C2交點的極坐標(ρ≥0,0≤θ<2π).
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知、
分別是橢圓
的左、右焦點,點
是橢圓
上一點,且
.
(1)求橢圓的方程;
(2)設直線與橢圓
相交于
,
兩點,若
,其中
為坐標原點,判斷
到直線
的距離是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】我國古代數學名著《算法統宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數是上一層燈數的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設有關于的一元二次方程
.
(Ⅰ)若是從
四個數中任取的一個數,
是從
三個數中任取的一個數,求上述方程有實根的概率.
(Ⅱ)若是從區間
任取的一個數,
是從區間
任取的一個數,求上述方程有實根的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com